
Lecture III

Oliver Daisey

These notes are entirely based on [Sie13].

1. Evaluating a volume integral

Recall the result from Lecture II that

fr(x) =

(
n∑
j=1

|xj|r
) 1

r

(1)

is an even gauge function on Rn for all r ≥ 1. Hence fr corresponds to a convex body Br by
Br = {x ∈ Rn | fr(x) < 1}. Let Vr denote the volume of Br. Let Γ denote the gamma function
Γ(x) =

∫∞
0
tx−1e−tdt.

Theorem 1. We have

Vr =
2nΓ

(
1
r

+ 1
)n

Γ
(
n
r

+ 1
) . (2)

In particular, the case r = 1 recovers V1 = 2n

n!
as was used in Lecture II.

Proof. By definition

Vr =

∫
Br
dx =

∫
· · ·
∫

∑n
j=1 |xj |r<1

dx1 . . . dxn. (3)

We now split the integral over different regions. Defining

Wn,r =

∫
· · ·
∫

∑n
j=1 x

r
j<1

xj≥0, j=1,..,n

dx1 . . . dxn, (4)

we have that
Vr = 2n ·Wn,r (5)

since Br has 0 as centre. Next, we observe that for any λ > 0,∫
· · ·
∫

∑n
j=1 x

r
j<λ

xj≥0, j=1,..,n

dx1 . . . dxn =

∫
· · ·
∫

∑n
j=1(xjλ−1/r)

1/r
<1

xj≥0, j=1,..,n

dx1 . . . dxn (6)
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and, by making the substitution xj 7→ xjλ
−1/r,∫

· · ·
∫

∑n
j=1(xjλ−1/r)

1/r
<1

xj≥0, j=1,..,n

dx1 . . . dxn = λn/r ·Wn,r. (7)

We may write

Wn,r =

∫
· · ·
∫

∑n
j=1 x

r
j<1

xj≥0, j=1,..,n

dx1 . . . dxn =

∫ 1

0


∫
· · ·
∫

∑n
j=1 x

r
j<1−xrn

xj≥0, j=1,..,n−1

dx1 . . . dxn−1

 dxn, (8)

and applying (6)-(7) with λ = 1− xrn,

Wn,r =

∫ 1

0

Wn−1,r · (1− xrn)(n−1)/rdxn. (9)

and so we need only evaluate a 1−dimensional integral. Since Wn−1,r is constant with respect to
xn, we may factor it out of the integral, so what’s left is to evaluate

In,r =

∫ 1

0

(1− xrn)(n−1)/rdxn. (10)

Let xn = t1/r. Then dxn = 1
r
· t(1−r)/rdt. Substituting,

In,r =
1

r

∫ 1

0

(1− t)(n−1)/r · t(1−r)/rdt. (11)

We now recognise (11) as an instance of the beta function B(x, y) =
∫ 1

0
tx−1(1 − t)(y−1)dt with

x = 1
r
, y = (n− 1)/r + 1. The beta function and the gamma function are related by [Art15]

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (12)

Hence

In,r =
1

r
·

Γ(n−1
r

+ 1)Γ(1
r
)

Γ(n
r

+ 1)
=

Γ(n−1
r

+ 1)1
r
Γ(1

r
)

Γ(n
r

+ 1)
=

Γ(n−1
r

+ 1)Γ(1
r

+ 1)

Γ(n
r

+ 1)
, (13)

where we used the relation 1
r
Γ(1

r
) = Γ(1

r
+ 1). Now by substituting into (9) we get that

Wn,r = Wn−1,r ·
Γ(n−1

r
+ 1)Γ(1

r
+ 1)

Γ(n
r

+ 1)
. (14)

By iterating this formula repeatedly for Wn−1,r,Wn−2,r so on, and noting that W1,r = 1, we obtain

Wn,r = W1,r ·
(
Γ(1

r
+ 1)

)n
Γ(n

r
+ 1)

=

(
Γ(1

r
+ 1)

)n
Γ(n

r
+ 1)

. (15)
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Hence by (5) we have

Vr = 2n ·
Γ(1

r
+ 1)n

Γ(n
r

+ 1)
(16)

as was to be shown.

2. Discriminant of an irreducible polynomial.

Recall that a polynomial P (ξ) = ξn+a1ξ
n−1+...+an with a1, ..., an ∈ Q is said to be irreducible

(over Q) if it cannot be written as a product of two polynomials of strictly smaller degrees with
coefficients in Q. Let ξ1, ..., ξn denote the zeros of P in C. We define the discriminant of P by the
formula

∆ =
∏

1≤j≤k≤n

(ξj − ξk)2 = det


ξn−11 ξn−21 ... 1
ξn−12 ξn−22 ... 1

...
...

...
ξn−1n ξn−2n ... 1


2

. (17)

Lemma 1. If P is irreducible, then no zero of P can be a zero of any polynomial of strictly
smaller degree, not identically zero, with rational coefficients.

Proof. See [BD22], Chapter 14.

Lemma 2. Let Q(x1, ..., xn) be a polynomial with integer coefficients which is symmetric
in x1, ..., xn. Then Q(ξ1, ..., ξn) may be expressed as a polynomial in a1, ..., an with integer
coefficients. If a1, ..., an are integers, then Q(ξ1, ..., ξn) is an integer.

Proof. See [BD22], Chapter 14.

By the results of Lecture II and the lemmas above we may prove

Theorem 2. Let P (ξ) = ξn + a1ξ
n−1 + ... + an be an irreducible polynomial with integer

coefficients a1, ..., an. If all the zeros of P are real, and ∆ denotes the discrimiannt of P , we
have

∆ ≥
(
nn

n!

)2

. (18)

Proof. Let x1, ..., xn be arbitrary integers not all equal to zero, ξ1, ..., ξn the n distinct zeros of P .
Define, for j = 1, ..., n,

yj =
n∑
k=1

ξn−kj xk. (19)

Note that for any 1 ≤ j ≤ n, yj 6= 0, since if yj = 0 then ξj is a zero of a polynomial which is not
identically zero, has integer coefficients, and has degree strictly less than n, which contradicts the
irreducibility of P (Lemma 1.) So the product y1y2 . . . yn is not zero, and it is an integer, because
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it is a symmetric polynomial with integer coefficients in the zeros of P (Lemma 2.) Because it is
a non-zero integer,

|y1y2 . . . yn| ≥ 1. (20)

Now write y = (y1, ..., yn) and introduce the gauge function

f(y) =
1

n

n∑
j=1

|yj|. (21)

Define µ = min{f(y) | y is a g-point,y 6= (0, ..., 0)}. Now Theorem 13 from Lecture II states

V µn ≤ 2nD (22)

where D =
√

∆ is the absolute value of the determinant of the transform (x1, ..., xn) 7→ (y1, ..., yn),
and V is the volume of the convex body B defined by the gauge function: B = {y ∈ Rn | f(y) < 1}.
Now V is the volume of the n−dimensional unit octahedron, scaled by factor n. Hence by using

Figure 1: The convex body B in the case n = 3.

the special case r = 1 in Theorem 1, we obtain

V =
(2n)n

n!
(23)

and hence

D =
√

∆ ≥ (µn)n

n!
. (24)

From the inequality of arithmetic and geometric means, we have

1

n

n∑
j=1

|yj| ≥ |y1y2...yn|1/n ≥ 1 (25)

for all y1, ..., yn. Hence µ = min f(y) = min 1
n

∑n
j=1 |yj| ≥ 1. Then by combining this result with

(24), we obtain
√

∆ ≥ nn

n!
(26)

as required.
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Example 1. We examine the theorem in the case n = 2. Let a, b be integers and let
P (ξ) = ξ2 +aξ+ b be the irreducible polynomial. Then the discriminant ∆ = a2− 4b. The theorem
claims that ∆ ≥ 4. Indeed we have ∆ > 0 since the zeros of P are non-repeated real roots. Since a
and b are integers, we must verify that ∆ 6= 1, 2 or 3. If ∆ = 1, then the polynomial is reducible,
since the roots are −a

2
± 1

2
. Since ∆ = a2 − 4b ≡ a2 (mod 4), and the square of any integer is

congruent to either 0 or 1 modulo 4, we deduce that ∆ 6= 2 and ∆ 6= 3. Hence ∆ ≥ 4, in agreement
with the theorem. In fact ∆ 6= 4 since in that case the polynomial is reducible; the roots are −a

2
±1.

We note here that the lower bound given by the theorem is not exact. By taking a = 1, b = −1, in
which case P is irreducible, we see that ∆ = 5 and this is the tightest lower bound.

In the proof of Theorem 2, we introduced the gauge function (21). We now show that the

bound ∆ ≥
(
nn

n!

)2
cannot be improved by choosing a gauge function of the form

fr(y) =

(
1

n

n∑
j=1

|yj|r
)1/r

(27)

for r ≥ 1. Let V (r) denote the volume of B(r) = {y ∈ Rn | fr(y) < 1}. Let 0 < s < r. Recall
Hölder’s inequality

n∑
j=1

apj · b
1−p
j ≤

(
n∑
j=1

aj

)p

·

(
n∑
j=1

bj

)1−p

(28)

for aj, bj ≥ 0 and 0 < p < 1, as discussed in Lecture II, (13). Use the values p = s
r
, aj = 1

n
|yj|r,

bj = 1
n

for j = 1, ..., n. Then (28) reads

1

n

n∑
j=1

|yj|s ≤

(
1

n

n∑
j=1

|yj|r
)s/r

. (29)

Hence we have

fs(y) =

(
1

n

n∑
j=1

|yj|s
)1/s

≤

(
1

n

n∑
j=1

|yj|r
)1/r

(30)

hence any y ∈ B(r) must also belong to B(s). Hence, by taking s = 1, we must have V (r) ≤ V (1)
for all r ≥ 1. So the bound cannot be improved by selecting r > 1.

3. Successive minima

Let f be an even gauge function on Rn. Let B be the convex body B = {x ∈ Rn | f(x) < 1}.
We define the successive minima of B as the set of real numbers µi with 1 ≤ i ≤ n such that
µk = inf{λ ∈ R | λB contains k linearly independent g-points.}.

Equivalently, we may define the successive minima as follows. We define µ1 to be the minimum
of f(g) over all g−points which are not the origin. Let x(1) be a vector such that f(x(1)) = µ1.
Then we define µ2 to be the minimum of f(g) over all g−points outside of the span of x(1). Let
x(2) be a vector outside of the span of x(1), such that f(x(2)) = µ2. Then we define µ3 to be the
minimum of f(g) over all g−points outside of the span of x(1) and x(2), and so on until we have
defined µn.
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Theorem 3. The above definitions are equivalent.

Proof. Let ν1 be as µ1 in the first definition and µ1 be as in the second definition. We will show
µ1 = ν1; the proof for the rest of the µi is similar. Suppose for a contradiction that ν1 < µ1. Let
x(1) 6= 0 be a g−point on the surface of ν1B, so f(x(1)) = ν1. This contradicts the definition of µ1

as the minimum of f(g) for all g−points g 6= 0. On the other hand, suppose for a contradiction
that µ1 < ν1. Then there exists a g−point x(1) 6= 0 such that f(x(1)) = µ1 < ν1, so that x(1) is a
g−point in ν1B, contradicting the definition of ν1 as the value of λ such that there are no g−points
except the origin inside λB.

4. Minkowski’s second theorem

Recall the following from Lecture II:

Theorem 4. (Minkowski’s first theorem.) Let f be an even gauge function on Rn, V the
volume of the convex body B = {x ∈ Rn | f(x) < 1}. Let µ1 be the minimum of f(x) as x
runs through all the g−points different from the origin. Then we have

V µn1 ≤ 2n. (31)

We may use the successive minima as defined above to generalise as follows:

Theorem 5. (Minkowski’s second theorem.) If µ1, ..., µn denote the successive minima of an
even gauge function f on Rn, then we have

V µ1µ2 . . . µn ≤ 2n (32)

where V denotes the volume of the convex body B = {x ∈ Rn | f(x) < 1}.
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