Lecture III

Oliver Daisey

These notes are entirely based on [Sie13].

1. Evaluating a volume integral

Recall the result from Lecture II that

$$f_r(x) = \left(\sum_{j=1}^n |x_j|^r\right)^{\frac{1}{r}} \tag{1}$$

is an even gauge function on \mathbb{R}^n for all $r \geq 1$. Hence f_r corresponds to a convex body \mathcal{B}_r by $\mathcal{B}_r = \{x \in \mathbb{R}^n \mid f_r(x) < 1\}$. Let V_r denote the volume of \mathcal{B}_r . Let Γ denote the gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.

Theorem 1. We have

$$V_r = \frac{2^n \Gamma \left(\frac{1}{r} + 1\right)^n}{\Gamma \left(\frac{n}{r} + 1\right)}.$$
(2)

In particular, the case r = 1 recovers $V_1 = \frac{2^n}{n!}$ as was used in Lecture II.

Proof. By definition

$$V_r = \int_{\mathcal{B}_r} dx = \int_{\sum_{j=1}^n |x_j|^r < 1} dx_1 \dots dx_n.$$
(3)

We now split the integral over different regions. Defining

$$W_{n,r} = \int_{\substack{\sum_{j=1}^{n} x_{j}^{r} < 1 \\ x_{j} \ge 0, \ j=1,..,n}} dx_{1} \dots dx_{n},$$
(4)

we have that

$$V_r = 2^n \cdot W_{n,r} \tag{5}$$

since \mathcal{B}_r has 0 as centre. Next, we observe that for any $\lambda > 0$,

$$\int_{\substack{\sum_{j=1}^{n} x_j^r < \lambda \\ x_j \ge 0, \ j=1,\dots,n}} \int dx_1 \dots dx_n = \int \dots \int_{\substack{\sum_{j=1}^{n} (x_j \lambda^{-1/r})^{1/r} < 1 \\ x_j \ge 0, \ j=1,\dots,n}} dx_1 \dots dx_n$$
(6)

and, by making the substitution $x_j \mapsto x_j \lambda^{-1/r}$,

$$\int \cdots \int_{\substack{\sum_{j=1}^{n} \left(x_{j}\lambda^{-1/r}\right)^{1/r} < 1\\x_{j} \ge 0, \ j=1,\dots,n}} dx_{1}\dots dx_{n} = \lambda^{n/r} \cdot W_{n,r}.$$
(7)

We may write

$$W_{n,r} = \int_{\substack{\sum_{j=1}^{n} x_j^r < 1\\ x_j \ge 0, \ j=1,\dots,n}} dx_1 \dots dx_n = \int_0^1 \left(\int_{\substack{\sum_{j=1}^{n} x_j^r < 1 - x_n^r\\ x_j \ge 0, \ j=1,\dots,n-1}} dx_1 \dots dx_{n-1} \right) dx_n,$$
(8)

and applying (6)-(7) with $\lambda = 1 - x_n^r$,

$$W_{n,r} = \int_0^1 W_{n-1,r} \cdot (1 - x_n^r)^{(n-1)/r} dx_n.$$
(9)

and so we need only evaluate a 1-dimensional integral. Since $W_{n-1,r}$ is constant with respect to x_n , we may factor it out of the integral, so what's left is to evaluate

$$I_{n,r} = \int_0^1 (1 - x_n^r)^{(n-1)/r} dx_n.$$
(10)

Let $x_n = t^{1/r}$. Then $dx_n = \frac{1}{r} \cdot t^{(1-r)/r} dt$. Substituting,

$$I_{n,r} = \frac{1}{r} \int_0^1 (1-t)^{(n-1)/r} \cdot t^{(1-r)/r} dt.$$
 (11)

We now recognise (11) as an instance of the *beta function* $B(x,y) = \int_0^1 t^{x-1}(1-t)^{(y-1)}dt$ with $x = \frac{1}{r}, y = (n-1)/r + 1$. The beta function and the gamma function are related by [Art15]

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$
(12)

Hence

$$I_{n,r} = \frac{1}{r} \cdot \frac{\Gamma(\frac{n-1}{r}+1)\Gamma(\frac{1}{r})}{\Gamma(\frac{n}{r}+1)} = \frac{\Gamma(\frac{n-1}{r}+1)\frac{1}{r}\Gamma(\frac{1}{r})}{\Gamma(\frac{n}{r}+1)} = \frac{\Gamma(\frac{n-1}{r}+1)\Gamma(\frac{1}{r}+1)}{\Gamma(\frac{n}{r}+1)},$$
(13)

where we used the relation $\frac{1}{r}\Gamma(\frac{1}{r}) = \Gamma(\frac{1}{r}+1)$. Now by substituting into (9) we get that

$$W_{n,r} = W_{n-1,r} \cdot \frac{\Gamma(\frac{n-1}{r}+1)\Gamma(\frac{1}{r}+1)}{\Gamma(\frac{n}{r}+1)}.$$
(14)

By iterating this formula repeatedly for $W_{n-1,r}$, $W_{n-2,r}$ so on, and noting that $W_{1,r} = 1$, we obtain

$$W_{n,r} = W_{1,r} \cdot \frac{\left(\Gamma(\frac{1}{r}+1)\right)^n}{\Gamma(\frac{n}{r}+1)} = \frac{\left(\Gamma(\frac{1}{r}+1)\right)^n}{\Gamma(\frac{n}{r}+1)}.$$
(15)

Hence by (5) we have

$$V_r = 2^n \cdot \frac{\Gamma(\frac{1}{r} + 1)^n}{\Gamma(\frac{n}{r} + 1)}$$
(16)

as was to be shown.

2. Discriminant of an irreducible polynomial.

Recall that a polynomial $P(\xi) = \xi^n + a_1 \xi^{n-1} + ... + a_n$ with $a_1, ..., a_n \in \mathbb{Q}$ is said to be *irreducible* (over \mathbb{Q}) if it cannot be written as a product of two polynomials of strictly smaller degrees with coefficients in \mathbb{Q} . Let $\xi_1, ..., \xi_n$ denote the zeros of P in \mathbb{C} . We define the *discriminant* of P by the formula

$$\Delta = \prod_{1 \le j \le k \le n} (\xi_j - \xi_k)^2 = \det \begin{pmatrix} \xi_1^{n-1} & \xi_1^{n-2} & \dots & 1\\ \xi_2^{n-1} & \xi_2^{n-2} & \dots & 1\\ \vdots & \vdots & & \vdots\\ \xi_n^{n-1} & \xi_n^{n-2} & \dots & 1 \end{pmatrix}^2.$$
(17)

Lemma 1. If P is irreducible, then no zero of P can be a zero of any polynomial of strictly smaller degree, not identically zero, with rational coefficients.

Proof. See [BD22], Chapter 14.

Lemma 2. Let $Q(x_1, ..., x_n)$ be a polynomial with integer coefficients which is symmetric in $x_1, ..., x_n$. Then $Q(\xi_1, ..., \xi_n)$ may be expressed as a polynomial in $a_1, ..., a_n$ with integer coefficients. If $a_1, ..., a_n$ are integers, then $Q(\xi_1, ..., \xi_n)$ is an integer.

Proof. See [BD22], Chapter 14.

By the results of Lecture II and the lemmas above we may prove

Theorem 2. Let $P(\xi) = \xi^n + a_1\xi^{n-1} + ... + a_n$ be an irreducible polynomial with integer coefficients $a_1, ..., a_n$. If all the zeros of P are real, and Δ denotes the discriminant of P, we have

$$\Delta \ge \left(\frac{n^n}{n!}\right)^2. \tag{18}$$

Proof. Let $x_1, ..., x_n$ be arbitrary integers not all equal to zero, $\xi_1, ..., \xi_n$ the *n* distinct zeros of *P*. Define, for j = 1, ..., n,

$$y_j = \sum_{k=1}^n \xi_j^{n-k} x_k.$$
 (19)

Note that for any $1 \le j \le n$, $y_j \ne 0$, since if $y_j = 0$ then ξ_j is a zero of a polynomial which is not identically zero, has integer coefficients, and has degree strictly less than n, which contradicts the irreducibility of P (Lemma 1.) So the product $y_1y_2 \ldots y_n$ is not zero, and it is an integer, because

•

it is a symmetric polynomial with integer coefficients in the zeros of P (Lemma 2.) Because it is a non-zero integer,

$$|y_1 y_2 \dots y_n| \ge 1. \tag{20}$$

Now write $y = (y_1, ..., y_n)$ and introduce the gauge function

$$f(y) = \frac{1}{n} \sum_{j=1}^{n} |y_j|.$$
(21)

Define $\mu = \min\{f(y) \mid y \text{ is a } g\text{-point}, y \neq (0, ..., 0)\}$. Now Theorem 13 from Lecture II states

$$V\mu^n \le 2^n D \tag{22}$$

where $D = \sqrt{\Delta}$ is the absolute value of the determinant of the transform $(x_1, ..., x_n) \mapsto (y_1, ..., y_n)$, and V is the volume of the convex body \mathcal{B} defined by the gauge function: $\mathcal{B} = \{y \in \mathbb{R}^n \mid f(y) < 1\}$. Now V is the volume of the *n*-dimensional unit octahedron, scaled by factor *n*. Hence by using

Figure 1: The convex body \mathcal{B} in the case n = 3.

the special case r = 1 in Theorem 1, we obtain

$$V = \frac{(2n)^n}{n!} \tag{23}$$

and hence

$$D = \sqrt{\Delta} \ge \frac{(\mu n)^n}{n!}.$$
(24)

From the inequality of arithmetic and geometric means, we have

$$\frac{1}{n} \sum_{j=1}^{n} |y_j| \ge |y_1 y_2 \dots y_n|^{1/n} \ge 1$$
(25)

for all $y_1, ..., y_n$. Hence $\mu = \min f(y) = \min \frac{1}{n} \sum_{j=1}^n |y_j| \ge 1$. Then by combining this result with (24), we obtain

$$\sqrt{\Delta} \ge \frac{n^n}{n!} \tag{26}$$

as required.

Example 1. We examine the theorem in the case n = 2. Let a, b be integers and let $P(\xi) = \xi^2 + a\xi + b$ be the irreducible polynomial. Then the discriminant $\Delta = a^2 - 4b$. The theorem claims that $\Delta \ge 4$. Indeed we have $\Delta > 0$ since the zeros of P are non-repeated real roots. Since a and b are integers, we must verify that $\Delta \ne 1, 2$ or 3. If $\Delta = 1$, then the polynomial is reducible, since the roots are $-\frac{a}{2} \pm \frac{1}{2}$. Since $\Delta = a^2 - 4b \equiv a^2 \pmod{4}$, and the square of any integer is congruent to either 0 or 1 modulo 4, we deduce that $\Delta \ne 2$ and $\Delta \ne 3$. Hence $\Delta \ge 4$, in agreement with the theorem. In fact $\Delta \ne 4$ since in that case the polynomial is reducible; the roots are $-\frac{a}{2} \pm \frac{1}{2}$.

We note here that the lower bound given by the theorem is not exact. By taking a = 1, b = -1, in which case P is irreducible, we see that $\Delta = 5$ and this is the tightest lower bound.

In the proof of Theorem 2, we introduced the gauge function (21). We now show that the bound $\Delta \geq \left(\frac{n^n}{n!}\right)^2$ cannot be improved by choosing a gauge function of the form

$$f_r(y) = \left(\frac{1}{n} \sum_{j=1}^n |y_j|^r\right)^{1/r}$$
(27)

for $r \ge 1$. Let V(r) denote the volume of $\mathcal{B}(r) = \{y \in \mathbb{R}^n \mid f_r(y) < 1\}$. Let 0 < s < r. Recall Hölder's inequality

$$\sum_{j=1}^{n} a_j^p \cdot b_j^{1-p} \le \left(\sum_{j=1}^{n} a_j\right)^p \cdot \left(\sum_{j=1}^{n} b_j\right)^{1-p}$$

$$(28)$$

for $a_j, b_j \ge 0$ and $0 , as discussed in Lecture II, (13). Use the values <math>p = \frac{s}{r}, a_j = \frac{1}{n}|y_j|^r$, $b_j = \frac{1}{n}$ for j = 1, ..., n. Then (28) reads

$$\frac{1}{n} \sum_{j=1}^{n} |y_j|^s \le \left(\frac{1}{n} \sum_{j=1}^{n} |y_j|^r\right)^{s/r}.$$
(29)

Hence we have

$$f_s(y) = \left(\frac{1}{n} \sum_{j=1}^n |y_j|^s\right)^{1/s} \le \left(\frac{1}{n} \sum_{j=1}^n |y_j|^r\right)^{1/r}$$
(30)

hence any $y \in \mathcal{B}(r)$ must also belong to $\mathcal{B}(s)$. Hence, by taking s = 1, we must have $V(r) \leq V(1)$ for all $r \geq 1$. So the bound cannot be improved by selecting r > 1.

3. Successive minima

Let f be an even gauge function on \mathbb{R}^n . Let \mathcal{B} be the convex body $\mathcal{B} = \{x \in \mathbb{R}^n \mid f(x) < 1\}$. We define the *successive minima* of \mathcal{B} as the set of real numbers μ_i with $1 \leq i \leq n$ such that $\mu_k = \inf\{\lambda \in \mathbb{R} \mid \lambda \mathcal{B} \text{ contains } k \text{ linearly independent g-points.}\}$.

Equivalently, we may define the successive minima as follows. We define μ_1 to be the minimum of f(g) over all g-points which are not the origin. Let $x^{(1)}$ be a vector such that $f(x^{(1)}) = \mu_1$. Then we define μ_2 to be the minimum of f(g) over all g-points outside of the span of $x^{(1)}$. Let $x^{(2)}$ be a vector outside of the span of $x^{(1)}$, such that $f(x^{(2)}) = \mu_2$. Then we define μ_3 to be the minimum of f(g) over all g-points outside of the span of $x^{(1)}$, and $x^{(2)}$, and so on until we have defined μ_n . **Theorem 3.** The above definitions are equivalent.

Proof. Let ν_1 be as μ_1 in the first definition and μ_1 be as in the second definition. We will show $\mu_1 = \nu_1$; the proof for the rest of the μ_i is similar. Suppose for a contradiction that $\nu_1 < \mu_1$. Let $x^{(1)} \neq 0$ be a g-point on the surface of $\nu_1 \mathcal{B}$, so $f(x^{(1)}) = \nu_1$. This contradicts the definition of μ_1 as the minimum of f(g) for all g-points $g \neq 0$. On the other hand, suppose for a contradiction that $x^{(1)}$ is a g-point in $\nu_1 \mathcal{B}$, contradicting the definition of ν_1 as the value of λ such that there are no g-points except the origin inside $\lambda \mathcal{B}$.

4. Minkowski's second theorem

Recall the following from Lecture II:

Theorem 4. (Minkowski's first theorem.) Let f be an even gauge function on \mathbb{R}^n , V the volume of the convex body $\mathcal{B} = \{x \in \mathbb{R}^n \mid f(x) < 1\}$. Let μ_1 be the minimum of f(x) as x runs through all the g-points different from the origin. Then we have

$$V\mu_1^n \le 2^n. \tag{31}$$

We may use the successive minima as defined above to generalise as follows:

Theorem 5. (Minkowski's second theorem.) If $\mu_1, ..., \mu_n$ denote the successive minima of an even gauge function f on \mathbb{R}^n , then we have

$$V\mu_1\mu_2\dots\mu_n \le 2^n \tag{32}$$

where V denotes the volume of the convex body $\mathcal{B} = \{x \in \mathbb{R}^n \mid f(x) < 1\}.$

References

- [Art15] Emil Artin. The gamma function. Courier Dover Publications, 2015.
- [BD22] Maxime Bôcher and Edmund Pendleton Randolph Duval. Introduction to higher algebra. Macmillan, 1922.
- [Sie13] Carl Ludwig Siegel. Lectures on the Geometry of Numbers. Springer Science & Business Media, 2013.