Lecture 111

Oliver Daisey

These notes are entirely based on [Siel3].

1. Evaluating a volume integral

Recall the result from Lecture 11 that

- (_Zw)r )

is an even gauge function on R” for all » > 1. Hence f, corresponds to a convex body B, by
B, = {x € R"| f.(z) < 1}. Let V, denote the volume of B,. Let I" denote the gamma function
= [te=letdt.
0

Theorem 1. We have .
_rr(te)

T T(2+1)
In particular, the case r = 1 recovers Vi = —T,l as was used in Lecture I1.
Proof. By definition
W:/dx:/---/dxl...dxn. (3)
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We now split the integral over different regions. Defining
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z;>0, j=1,.
we have that
‘/r =2". Wn,r (5)

since B, has 0 as centre. Next, we observe that for any A\ > 0,
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and, by making the substitution z; — mj)\*l/’",

/ / doy . dvy, = X7 W, (7)
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We may write
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and applying (6)-(7) with A =1 — a7,
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and so we need only evaluate a 1—dimensional integral. Since W,,_, is constant with respect to
Tn, we may factor it out of the integral, so what’s left is to evaluate

1
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Let z,, = t*". Then dx,, = L =)/ dt. Substituting,

1 !
L, = —/ (1 —t)n=D/r . A=n/rgy (11)
" Jo
We now recognise (11) as an instance of the beta function B(x,y) fo 71 )@=Ddt with
x =1 y=(n-1)/r+1. The beta function and the gamma function are related by [Art15]
['()I'(y)
B(z,y) = —2- ) 12
Hence
;o] M=t 4+ 1)) T +10irE)  r+0ri+1) (13)
T rez+1  IE+1) 2 +1) ’
where we used the relation I'(2) = T'(+ + 1). Now by substituting into (9) we get that
re=t+)rit+1
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By iterating this formula repeatedly for W,,_ ,, W,,_5, so on, and noting that W, , = 1, we obtain
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Hence by (5) we have
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as was to be shown.

2. Discriminant of an irreducible polynomial.

Recall that a polynomial P(§) = £"+a, " ' +...+a, with ay, ..., a,, € Q is said to be irreducible
(over Q) if it cannot be written as a product of two polynomials of strictly smaller degrees with
coefficients in Q. Let &1, ..., &, denote the zeros of P in C. We define the discriminant of P by the

formula
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Lemma 1. If P is irreducible, then no zero of P can be a zero of any polynomial of strictly
smaller degree, not identically zero, with rational coefficients.

Proof. See [BD22], Chapter 14. O

Lemma 2. Let Q(x1,...,x,) be a polynomial with integer coefficients which is symmetric
in xi,....x,. Then Q(&,...,&,) may be expressed as a polynomial in ay, ...,a, with integer
coefficients. If ay, ..., a, are integers, then Q(&1,...,&,) is an integer.

Proof. See [BD22], Chapter 14. O

By the results of Lecture IT and the lemmas above we may prove

Theorem 2. Let P(§) = " + ai&" ' + ... + a, be an irreducible polynomial with integer
coefficients ay, ..., a,. If all the zeros of P are real, and A denotes the discrimiannt of P, we

have
Az(@)é (18)

n!

Proof. Let x4, ..., x, be arbitrary integers not all equal to zero, &, ..., &, the n distinct zeros of P.
Define, for j =1,...,n,

yi =y & . (19)
k=1

Note that for any 1 < j <mn, y; # 0, since if y; = 0 then &; is a zero of a polynomial which is not
identically zero, has integer coefficients, and has degree strictly less than n, which contradicts the
irreducibility of P (Lemma 1.) So the product y1ys ...y, is not zero, and it is an integer, because



it is a symmetric polynomial with integer coefficients in the zeros of P (Lemma 2.) Because it is
a non-zero integer,

lY1y2 - yn| > 1. (20)

Now write y = (y1, ..., y») and introduce the gauge function
1 n
fl) ==yl (21)
j=1

Define pn = min{f(y) | y is a g-point,y # (0, ...,0)}. Now Theorem 13 from Lecture II states
V" < 2"D (22)
where D = v/A is the absolute value of the determinant of the transform (z1, ..., zn) = (Y1, ..., Yn),

and V is the volume of the convex body B defined by the gauge function: B = {y € R" | f(y) < 1}.
Now V is the volume of the n—dimensional unit octahedron, scaled by factor n. Hence by using
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Figure 1: The convex body B in the case n = 3.

the special case r = 1 in Theorem 1, we obtain

_ (2n)"
V= n! (23)
and hence .
D=vVA> (,un') ) (24)
n!
From the inequality of arithmetic and geometric means, we have
1 - 1/n
EZ w5l > 192 ynl " > 1 (25)

Jj=1

for all yy, ..., y,. Hence p = min f(y) = min = > i1 yj| = 1. Then by combining this result with
(24), we obtain

VA > Z—T (26)

as required. 0



Example 1. We examine the theorem in the case n = 2. Let a,b be integers and let
P(&) = €2 +a& + b be the irreducible polynomial. Then the discriminant A = a® —4b. The theorem
claims that A > 4. Indeed we have A > 0 since the zeros of P are non-repeated real roots. Since a
and b are integers, we must verify that A # 1,2 or 3. If A =1, then the polynomial is reducible,
since the roots are —5 + % Since A = a? — 4b = a* (mod 4), and the square of any integer is
congruent to either 0 or 1 modulo 4, we deduce that A # 2 and A # 3. Hence A > 4, in agreement
with the theorem. In fact A # 4 since in that case the polynomial is reducible; the roots are —5 % 1.

We note here that the lower bound given by the theorem is not exact. By taking a =1,b= —1, in
which case P is irreducible, we see that A =5 and this is the tightest lower bound.

In the proof of Theorem 2, we introduced the gauge function (21). We now show that the
bound A > (’;—7)2 cannot be improved by choosing a gauge function of the form

1 n 1/r
frly) = (EZ'WT) (27)

for r > 1. Let V(r) denote the volume of B(r) = {y € R" | f,(y) < 1}. Let 0 < s < r. Recall

Holder’s inequality
n n p n 1-p
S (o) (30) )
j=1

J=1 J=1

for a;,b; > 0 and 0 < p < 1, as discussed in Lecture II, (13). Use the values p = %, a; = %|yj|’”,
b =1 for j =1,..,n. Then (28) reads

1< 1 o
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Hence we have
1/r

n 1/s n
fuly) = (%Zw) < (%Zw) (30)

hence any y € B(r) must also belong to B(s). Hence, by taking s = 1, we must have V' (r) < V(1)
for all » > 1. So the bound cannot be improved by selecting r > 1.

3. Successive minima

Let f be an even gauge function on R™. Let B be the convex body B = {z € R" | f(x) < 1}.
We define the successive minima of B as the set of real numbers u; with 1 < ¢ < n such that
wr = inf{\ € R | AB contains k linearly independent g-points.}.

Equivalently, we may define the successive minima as follows. We define p; to be the minimum
of f(g) over all g—points which are not the origin. Let z") be a vector such that f(z™M) = ;.
Then we define 5 to be the minimum of f(g) over all g—points outside of the span of z(!). Let
@ be a vector outside of the span of ™), such that f(z®) = . Then we define p3 to be the
minimum of f(g) over all g—points outside of the span of #(!) and ), and so on until we have
defined ,,.



Theorem 3. The above definitions are equivalent.

Proof. Let vy be as p; in the first definition and gy be as in the second definition. We will show
1 = vy; the proof for the rest of the y; is similar. Suppose for a contradiction that v, < py. Let
(M £ 0 be a g—point on the surface of 118, so f(z(!)) = v;. This contradicts the definition of y,
as the minimum of f(g) for all g—points g # 0. On the other hand, suppose for a contradiction
that p; < 1. Then there exists a g—point 2! # 0 such that f(z") = u; < vy, so that 2 is a
g—point in 14 B, contradicting the definition of 14 as the value of A such that there are no g—points
except the origin inside A\B. O

4. Minkowski’s second theorem

Recall the following from Lecture II:

Theorem 4. (Minkowski’s first theorem.) Let f be an even gauge function on R", V the
volume of the convexr body B = {x € R" | f(x) < 1}. Let puy be the minimum of f(x) as x
runs through all the g—points different from the origin. Then we have

Vil < 2m, (31)

We may use the successive minima as defined above to generalise as follows:

Theorem 5. (Minkowski’s second theorem.) If p, ..., i, denote the successive minima of an
even gauge function f on R™, then we have

Vg ... pp <27 (32)

where V' denotes the volume of the convex body B = {x € R" | f(z) < 1}.
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