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OLIVER DAISEY

Abstract. We provide a combinatorial overview of finite geometric type cluster
algebras, with an emphasis on type An. We begin with a summary of the basic
theory leading to a construction of a cluster algebra. We repeat the finite type
classification as in [2], and discuss the classification of finite mutation type quiv-
ers. We discuss the associahedra, a family of convex polytopes which model the
combinatorics of type An seeds, and conclude with a discussion of triangulations
and a proof of a combinatorial formula for the associahedra.
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1. Introduction

Cluster algebras, introduced by Sergey Fomin and Andrei Zelevinsky in their influ-
ential 2001 paper [1] are a relatively new class of commutative rings, equipped with
a distinguished set X of generators, called cluster variables. This set is obtained
by joining together n-tuples of cluster variables, called clusters. The relationship
between clusters is as follows: To each cluster x, we assign a matrix B, called an
exchange matrix. The pair (x, B), called a seed, is then transformed like so: A cluster
variable x = xi is chosen, and one obtains another cluster x′ by replacing x with a
variable x′, related via the following exchange relation:

(1.1) xx′ = M1 +M2,

where M1 and M2 are monomials without common divisors, determined by the ex-
change matrix B and the n−1 remaining variables. We also transform the exchange
matrix B through a process called mutation, replacing it with a matrix B′ as defined
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Figure 1. A quiver.

in Section 2. Imposing that any two clusters may be obtained via seed exchanges
fixes a combinatorial structure on the generators, which are of interest in this paper.

Typically, the set of clusters obtained by exchanges is infinite. A subclass of the
cluster algebras are cluster algebras of finite mutation type, in which this set is finite.
A natural construction from this set is the exchange graph, whose vertices are the
clusters, and where two vertices share an edge if and only if one may be obtained
from the other via a single exchange. The exchange graph may be viewed as the
one-skeleton of a simplicial complex, whose ground set is X (the set of all cluster
variables) and whose maximal simplices are the clusters. For a large portion of
the finite type cluster algebras, this simplicial complex may be realised as a convex
polytope.

This paper is a combinatorial overview of this theory. We begin with a review
of most of the fundamental notions of cluster algebra theory. We then focus our
attention on the cluster algebras of type An, who are naturally associated with tri-
angulations of convex polygons, and hence may be associated to an abstract polytope
called an associahedron. We then derive a matrix that enumerates how these poly-
topes inherit each other, and discuss some of its consequences.

2. Quiver mutation and cluster algebras

In this section, we begin to walk through the construction of a cluster algebra. A
quiver is a directed graph on finitely many vertices. The combinatorial structure of
exchange relations may be expressed as cluster quivers, which are quivers without
loops or 2-cycles. From now on, quivers are always cluster quivers.

Definition 2.1. A quiver is a finite directed graph without loops or 2-cycles.

To every quiver Q on n vertices, there exists an n×n matrix B, called the incidence
matrix of Q. This matrix encodes the adjacencies of the vertices of Q, whose (i, j)th
entry is the number of (signed) incidences of arrows with source i and target j. It
is easy to see that this matrix is skew-symmetric, that is bij = −bji. We use the
notation B again for this matrix, as it is precisely the incidence matrix of a quiver
that we use for the exchange relations of cluster variables.
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We now turn to the notion of quiver mutation.

Definition 2.2. Quiver mutation. Let Qn be the set of all quivers on n vertices.
Then define µk : Qn → Qn, called mutation on the kth vertex, by transforming
Q ∈ Qn as follows:

(1) For every path of arrows i→ k → j, add a new arrow i→ j.
(2) Reverse any arrows incident or outbound from k.
(3) Delete a maximal collection of 2-cycles that appear after executing step 1.

This definition can be stated equivalently in terms of how the incidence matrix
transforms.

Definition 2.3. Matrix mutation. Let B be the n× n incidence matrix associated
to Q ∈ Qn. Let [bikbkj]+ denote the positive part of bikbkj. Then mutation at k on
B, denoted µk(B), is the n× n matrix B′ defined as follows:

(2.1) b′ij =

{
−bij, for i = k or j = k

bij + sgn(bik) [bikbkj]+ , otherwise.

Since quivers and their incidence matrices are equivalent data, we may jointly refer
to quiver and matrix mutation as simply mutation. We now list some properties of
mutation:

Proposition 2.4. Mutation satisfies the following:

(1) Mutation is involutive, that is µ2
k(Q) = Q.

(2) Mutation preserves the rank of the incidence matrix.

By repeatedly mutating at vertices, we may generalise Definition 2.2.

Definition 2.5. Mutation at a sequence of vertices. Let k1, k2, ..., km be a sequence
of m vertices. We call the composition µkm ◦ µkm−1 ◦ ... ◦ µk1 mutation on a sequence
of vertices, and denote this function by µk1,k2,...,km .

Typically it happens that a sequence of mutations produces quivers which are
identically structured, but may differ only up to labelling. Any two such quivers
have the same combinatorial structure, and thus we typically consider quivers up to
isomorphism.

Definition 2.6. Quiver isomorphism. Two quivers Q1, Q2 are called isomorphic if
there exists a directed graph isomorphism between them. We then write Q1

∼= Q2.

Generally we are interested in what quivers may be obtained just by applying
mutations to a given starting quiver.

Definition 2.7. Mutation equivalence. Let Q1, Q2 be quivers. We say that Q1 is
mutation equivalent to Q2 if there exists a sequence of vertices k1, k2, ..., km such that
µk1,k2,...,km(Q1) ∼= Q2.

Mutation equivalence may be verified to be an equivalence relation on Qn; it is
reflexive and symmetric by item 1. of Proposition 2.4, and transitivity is a sim-
ple consequence too; if µk1,k2,...,kn(Q1) ∼= Q2 and µl1,l2,...,lm(Q2) ∼= Q3, then clearly
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µk1,k2,...kn,l1,l2,...lm(Q1) ∼= Q3. Given a fixed quiver Q ∈ Qn, we may consider all
quivers mutation-equivalent to Q.

Definition 2.8. Mutation class. The mutation class [Q] of Q is the equivalence
class of Q under mutation-equivalence in Qn.

In the frame of a quiver’s mutation class, we may construct the exchange graph
discussed in the introduction.

Definition 2.9. Exchange graph. The exchange graph G(Q) of a quiver Q ∈ Qn is
the graph whose vertex set is [Q], and where any two vertices share an edge if they
are isomorphic up to a single mutation.

We obtain a larger class of exchange matrices if we weaken our skew-symmetrical
constraint.

Definition 2.10. Skew symmetrisable. We say that a matrixB is skew-symmetrisable
if there exists a diagonal matrix D with positive integer diagonal entries such that
the matrix DB is skew-symmetric. We then refer to D as the symmetriser of B.

One may verify that a skew-symmetrisable matrix remains skew-symmetrisable
under mutations.

We need one final extension to our set up before we present the definition of a
cluster algebra.

Definition 2.11. Seed. Let B be an n × n skew-symmetrisable matrix, let k be
a field of characteristic 0 and F a field extension, and let x = (x1, x2, ..., xn) be a
tuple of n algebraically independent elements in the ambient field F . A seed is a
pair (x, B).

We may choose a fixed seed S and construct a cluster algebra from it as follows.

Definition 2.12. Seed mutation. Let S = (x, B) be a seed. We define mutation on
S at k, denoted µk, as the operation that produces the seed S ′ = (x′, B′) defined as
follows:

(1) B′ = µk(B) as usual matrix mutation.
(2) x′ = (x1, ..., x

′
k, ..., xn), where x′k satisfies

xkx
′
k =

∏
bik>0

xbiki +
∏
bjk<0

x
−bjk
j .

We want to consider seeds up to isomorphism when constructing a cluster algebra;
we say two seeds are isomorphic if they can be obtained from each other by a
simultaneous permutation of cluster variables and matrix rows/columns.

Definition 2.13. Cluster algebra. The cluster algebra A(x, B) is the subalgebra of
the ambient field F generated by the set

X(x, B) =
⋃

(x′,B′)∼(x,B)

{x′1, x′2, ..., x′n}.

An extension of the combinatorial set up will be useful in later sections.
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Definition 2.14. Extended exchange matrices. Fix m ≥ n ≥ 1. Let B̃ be an m×n
matrix with integer entries. Write B̃ in block form as

B̃ =

[
B
C

]
,

where B is an n × n matrix and C is an (m − n) × n matrix. We call B the

principal part of B̃. We say that B̃ is an exchange matrix if the principal part is
skew-symmetrisable.

We label the indices k ∈ {1, ..., n}} mutable and the indices k ∈ {n+ 1, ..., n+m}
frozen.

3. Finite mutation type seeds

In this section, finite type cluster algebras and quivers are completely classified,
and their combinatorial structure discussed. The finite type cluster algebra classifi-
cation is in a one-to-one correspondence to the classification of the finite crystallo-
graphic root systems, an astonishing result due to Fomin-Zelevinsky [2]. Moreover,
the property of the initial seed of a cluster algebra (x,y, B) to be of finite type does
not depend on the choice of coefficients y, and only on the exchange matrix B. We
say that a cluster algebra is of finite type if its initial seed mutation class is finite, or
equivalently that the cluster algebra has finitely many cluster variables. We call this
seed mutation class a seed pattern. Recall that a quiver is of finite mutation type if
its mutation class is finite. Not every finite mutation type seed is of finite type; the
Markov quiver has singleton mutation class, but infinite seed mutation class.

We first state some equivalent conditions for a seed to be of finite type. We borrow
some notation from [3].

Lemma 3.1. A cluster algebra is of finite type if and only if all of its exchange
matrices B = (bij) have the property that |bijbji| ≤ 3 for any pair of indices i, j.

Proof. Suppose on the contrary that there exists a matrix B′ij = (b′ij) with indices
k, l such that |b′klb′lk| > 3. Then by iterative mutation on k and l, we can make
the product |b′klb′lk| arbitrarily large, and thus generate arbitrarily many distinct
seeds. �

The above lemma motivates the following definition.

Definition 3.2. 2-finite. A skew-symmetrisable matrix B = (bij) is called 2-finite
if and only if for any matrix B′ mutation equivalent to B and for any indices i and
j, we have |b′ijb′ji| ≤ 3.

Lemma 3.3. A seed pattern is of finite type if and only if it has finitely many cluster
variables.

Proof. Obviously if a seed pattern has finitely many seeds, it must have finitely
many cluster variables. Suppose now that a seed pattern haws finitely many cluster
variables. Suppose for contradiction that there are infinitely many seeds; then the
possible entries of the exchange matrices of these seeds must be unbounded. But then
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one of these exchange matrices must be 2-finite, and hence on the associated seed
there exists a sequence of mutations that produce infinitely many cluster variables,
contradicting our assumption. �

We now introduce the Cartan matrices of finite type, whose classification is what
our classification of finite type cluster algebras is parallel to.

Definition 3.4. Cartan matrices. A square n× n integer matrix A = (aij) is called
a symmetrisable generalised Cartan matrix if it satisfies the following conditions:

(1) aii = 2 for all 1 ≤ i ≤ n.
(2) aij ≤ 0 for all i 6= j.
(3) There exists a diagonal matrix D with positive diagonal entries such that DA

is symmetric.

We call D the symmetriser of A. We call A positive if DA is positive definite.
Any such matrix satisfies aijaji ≤ 3 for i 6= j. We refer to positive symmetrisable
generalised Cartan matrices as Cartan matrices of finite type.

The Cartan matrices encode information about the geometry of root systems.
The classification of Cartan matrices of finite type is in a direct correspondence
to the classification of finite crystallographic root systems. To each Cartan matrix
A = (aij), we can assign a graph, called the Dynkin diagram of A, which is a graph
with vertices 1, ..., n and where vertices i, j with i 6= j are joined by aijaji edges,
with arrows according to how the corresponding root vectors are arranged [5]. Each

exchange matrix can be associated to a Cartan matrix of finite type.

Definition 3.5. Cartan counterpart. Let B = (bij) be a skew-symmetrisable integer
matrix. Define A = A(B) = (aij) by

aij =

{
2 if i = j;

−|bij| if i 6= j.

We call A the Cartan counterpart to B.

We are now ready to present the classification of cluster algebras of finite type,
due to S. Fomin and A. Zelevinsky in [2]:

Theorem 3.6. A cluster algebra is of finite type if and only if it has a seed with
exchange matrix B, such that the Cartan counterpart A(B) is a Cartan matrix of
finite type.

Similarly to how the Cartan-Killing classification partitions semi simple Lie alge-
bras into ’types’ based on the type of their Cartan matrices, so the finite type cluster
algebras may be given types.

We may follow a similar course to classify which quivers are mutation finite. Fe-
likson, Shapiro and Tumarkin provide an answer in [6]:

Theorem 3.7. A quiver Q is of finite mutation type if and only if it is one of the
following:
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Figure 2. Dynkin diagrams corresponding to all the possible Cartan counterparts
of finite type cluster algebras.

(1) A quiver with two vertices.
(2) A quiver associated to a triangulation of a two-dimensional bordered surface

[7].
(3) A quiver that is mutation equivalent to one of a list of 11 exceptional quivers.

Figure 3. The 11 exceptional type quivers.

Of particular interest are the type An quivers, because these may be assigned to
triangulations of regular polygons (Section 5). Also of interest is the type X6 quiver.
The exchange graph in Figure 3 admits plenty of symmetries, and the mutation
process interacts nicely with the automorphism group of each of the quivers in the
mutation class.

4. Associahedra

The combinatorics of type An seeds are governed by the associahedra (or Stasheff
polytopes, named after James Stasheff [8].) We present a summary of these poly-
topes.

There are many ways to construct the associahedra, the most well-known of these
ways as the secondary polytope of a regular polygon [4]. We summarise the combi-
natorial data attached to the associahedra; so we specialise to the abstract polytope



8 OLIVER DAISEY

Figure 4. The exchange graph of X6. Notice the symmetry about the dashed line
obtained by reversing arrows.

associated to the flip graph of a triangulation of a regular polygon. See Section 5 for
the details.

Definition 4.1. Associahedron Let n ≥ 1 be an integer. Let Pn+1 be a regular
polygon with n + 1 vertices. We define Kn, the n−associahedron, as the abstract
polytope associated to the flip graph of a triangulation of Pn+1.

We first present the main features of these polytopes. Proofs are available in
[4]. By exploiting known numerics about triangulations of regular polygons, we can
extract information about the associahedra.
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Figure 5. The associahedron K5.

Lemma 4.2. Kn consists of Cn−1 vertices, where Cn is the nth Catalan number. It
is (n− 2)−regular, that is each vertex of Kn connects to exactly n− 2 neighbouring
vertices by edges. It consists of (n− 2)Cn−1/2 edges.

The associahedra have a recursive structure; lower-dimensional associahedra man-
ifest in higher-dimensional ones. We first need to define precisely what we mean by
this.

Definition 4.3. Inheritance. Fix integers n ≥ k. We say that Kk is inherited in Kn

if we may obtain a copy of Kk by restricting the vertex set of Kn. We count two
inheritances as indistinct if they use the same vertices of Kn.

There may be different ways for an inheritance to occur; see for example Figure
6. The following records how many times this happens.

Theorem 4.4. Fix integers n ≥ k. The number of times the associahedron Kk is
distinctly inherited in Kn is given by the inheritance matrix

(4.1) snk = (n+ 1)
∑

L∈Pn−k

(k)|L|−1∆L,

where Pn−k is the set of partitions of n − k, (x)n = x!
(x−n+1)!

denotes the falling

factorial of x up to n, and

(4.2) ∆L =
∏
l∈L

Cl

R(l)!

where Cl is the lth Catalan number and R(l) is the number of parts of length l in L.

Proof. Deferred to Section 5, where we consider triangulations. �
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Figure 6. Some low-dimension Stasheff polytopes, and the corresponding flip
graphs that generate them.

An interesting result concerning these polytopes concerns the Lagrange inversion
theorem, due to Loday [9].

Theorem 4.5. Let f(x) = x + a1x
2 + a2x

3 + ... + anx
n+1 + ... be a formal power

series in the variable x, and let g(x) = x+b1x
2 +b2x

3 + ...+bnx
n+1 + ... be its inverse

under left composition, that is we impose g(f(x)) = x. This allows us to write the
coefficients bn as polynomials in a1, ..., an. We have the following result:

(4.3) bn =
∑

(−1)
∑

niλ(n1, ..., nk)an1
1 ...a

nk
n ,

where the sum is extended to all k-tuples of integers (n1, ..., nk) so that n1 + 2n2 +
... + knk = n, and the coefficient λ(n1, ..., nk) is the number of cells of the Stasheff
polytope Kn−1 that are isomorphic to the cartesian product (K0)

n1 × ...× (Kk−1)
nk .

5. Triangulations and type An seeds

In this section, we discuss the useful relationship between type An seeds and
triangulations of regular (n+ 3)−gons. In the process, we obtain a proof for formula
(4.1).

Definition 5.1. Triangulation. Let Pn be a regular n−gon. Then a triangulation
T of Pn is a maximal collection of non-intersecting diagonals of Pn.
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Figure 7. A triangulation of a k-gon.

We call these diagonals arcs of the triangulation. When a triangulation T has
been fixed, we can assign a quiver to it as follows: The vertices are the arcs of T ,
and we draw an arrow from arc i to arc j if and only if i and j are edges of the same
triangle, and i directly precedes j when the boundary of this triangle is traversed in
the anti-clockwise sense. We denote this quiver by Q(T ). Mutation of this quiver
has a very elegant geometric interpretation in terms of flips.

Definition 5.2. Flips. Let T be a triangulation of a regular polygon Pn, and let i
be an arc of T . Then the flip at i is the triangulation Ti obtained by moving i to
the other diagonal of the quadrilateral formed when i is deleted from T .

It is fairly simple to prove µi(Q(T )) = Q(Ti), so flips and mutations are on equal
footing.

Recall that a quiver Q is of type An if it has the same underlying diagram as a
Dynkin diagram of type An.

Figure 8. The assignment of a quiver to a triangulation.



12 OLIVER DAISEY

Lemma 5.3. Every quiver of type An may be obtained by a triangulation of a regular
polygon.

We may interpret this result by refining our previous point; we view triangulations
and quivers of type An as being in bijective correspondence.

Lemma 5.4. The number of triangulations of a convex polygon with n vertices is
given by Cn−2, the (n− 2)th Catalan number.

Proof. This is a classical result; see for example [10]. �

We need to summarise some facts about associahedra before we prove Theorem
4.1. One should keep in mind Figure 6.

Lemma 5.5. Let Kn be the n−associahedron. The vertices of Kn are in direct
correspondence with distinct triangulations of Pn+1.

Starting at a vertex on an associahedron then, a single flip of the corresponding
triangulation to that vertex is equivalent to walking to an adjacent vertex on the
associahedron.

Definition 5.6. Subpolygon. Let n ≥ k be integers. A k−subpolygon Pk (subpoly-
gon for short) of Pn is a polygon obtained by choosing k vertices of Pn and inscribing
a polygon on these vertices inside Pn.

We abuse notation from now on and use Pk to refer to convex polygons on k
vertices, too. Note that a subpolygon partitions Pn into smaller sections; we refer to
the region of Pn that does not lie in the inscribation as its outside region.

The key is the following:

Theorem 5.7. Let Kn, Kk be associahedra with n ≥ k. Distinct occurences of Kk

in Kn are in correspondence with distinct occurences of Pk−1 as a subpolygon of Pn−1
with its outside region triangulated.

Note this means that, with a fixed subpolygon Pk−1, distinct triangulations of the
outside region correspond to distinct occurences of Kk in Kn.

Proof. Inscribe a subpolygon Pk of Pn and fix a triangulation of the outside region.
Then, fixing a triangulation of Pk inside Pn, we obtain a full triangulation of Pn. This
corresponds to a vertex of Kn+1 by Lemma 5.5. By flipping arcs of the triangulation
of Pk, we walk around an occurence of Kk+1 inside Kn+1. Changing the triangulation
of the outside region will lead to a new triangulation of Pn, so by flipping arcs in Pk

again, we walk around a different occurence. Hence all the occurences of Kk in Kn

are given by different ways of fixing Pk−1 inside Pn−1 and triangulating the outside
region. �

We are now in a position to prove Theorem 4.1 from Section 4. We need to find
the number of ways of fixing Pk inside Pn and triangulating the remain region. We
will show the number of distinct occurences of Kk in Kn is given by

(5.1) snk = (n+ 1)
∑

L∈Pn−k

(k)|L|−1∆L,
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where Pn−k is the set of partitions of n− k, (x)n denotes the falling factorial of x up
to n, and

(5.2) ∆L =
∏
l∈L

Cl

R(l)!

where Cl is the lth Catalan number and R(l) is the number of parts of length l in L.

Proof. By virtue of Theorem 5.7 (and the subsequent remark), we need only consider
the number of ways we may inscribe a k-gon into an n-gon, and triangulate the
remaining region.

Let Pn be a regular polygon with n vertices. We now consider how we may inscribe
a k−subpolygon Pk. We have n− k vertices which are not vertices of Pk. Together
these determine a partition of n − k, according to how many unused vertices are
directly adjacent on the perimeter of Pn.

Fix a partition L = (l1, l2, ..., lm) of n− k, so we may write

n− k =
m∑
i=1

li,

where the li satisfy l1 ≥ l2 ≥ ... ≥ lm ≥ 1. When we have chosen k vertices of Pn such
that the spaces between the chosen vertices describe the partition L, the polygon Pn

is partitioned into the subpolygon Pk and the smaller subpolygons Pli+2, 1 ≤ i ≤ m
comprising the outer region. Hence there are

(5.3)
m∏
i=1

Cli

ways of triangulating the outer region by Lemma 5.4.

We now need to calculate the number of ways we can inscribe a k−gon into Pn

such that the vertices of Pn in the outside region describe L. We need to decide how
each vertex of Pn is allocated, so predetermine the locations of the outer vertices by
appending to each group of outer vertices a vertex of Pk. This procedure uses m
vertices of Pk, leaving k −m vertices that are not attached to any groups of outer
vertices, and hence are free to allocate (so between two groups of outer vertices there
could be several vertices of Pk). The k groups of vertices can be assigned to Pn in k!
ways, and there are n ways we may choose a starting vertex for our assignment. We
need to account for the fact that the k−m ungrouped vertices are indistinguishable,
so we divide by (k − m)!. And repeated parts of L will lead to indistinguishable
groups, so we divide by

∏
l∈L R(l)!, where R(l) is the number of repeats for a distinct

part of L. Finally our procedure will count the same arrangement k times, so we
need to divide by k. Putting this all together we get for our number of ways

(5.4) n
k!

k!(k −m)!

∏
l∈L

1

R(l)!
= n

(k − 1)!

(k −m)!

∏
l∈L

1

R(l)!
.
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Now translate variables n→ n+ 1, k → k + 1. The number of ways a copy of Kk is
inherited in Kn for a fixed partition L of n− k is therefore given by

(5.5) (n+ 1)
(k + 1)!

(k + 2− |L|)!
∏
l∈L

Cl

R(l)!
= (n+ 1)

k!

(k + 1− |L|)!
∏
l∈L

Cl

R(l)!

and by summing over all partitions of n− k we obtain (4.1).

�

6. Potential extensions

We discussed finite type cluster algebras and seeds in this paper. The main in-
vestigation was seeds of type An. It would be interesting to see the analogue of the
inheritance matrix formula as well as the Lagrange inversion formula analogue for
seeds of different type. A sequel paper will discuss a similar combinatorial approach
to seeds of other types, particularly Dn, via the more generalised framework of root
systems.
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