
Laurent Phenomenon Algebras Talk

Oliver Daisey

Structure of the talk

1. Introduction to cluster algebras.

2. Introduction to LP algebras.

3. Linear LP algebras.

4. LP algebra SageMath package.

1 Cluster algebras

First start by introducing cluster algebras. Keep in mind this is a ”simplified” account (there
are many, many developments on the subject).

1.1 Background

Cluster algebras are commutative rings with distinguished generators (cluster variables)
having a remarkable combinatorial structure. Useful in:

• Poisson geometry (we can give a Poisson variety a mutually compatible structure of a
cluster algebra),

• triangulations of surfaces and Teichmüller theory (triangulations of surfaces form a
cluster algebra),

• tropical geomety (ties into the positivity and mathematical physics aspects of cluster
algebras), and in general:

• Mathematical physics: wall-crossing phenomena, quiver gauge theories, scattering am-
plitudes, soliton solutions to the KP equation.

• ...and many more!

1

They were originally defined by Andrei Zelevinsky and Sergey Fomin in 2000 to study things
like total positivity and (dual) canonical bases of semisimple Lie algebras. In this talk we
will approach them combinatorially.

1.2 Pentagon recurrence

To get the basic idea, consider the sequence f1, f2, f3, . . . defined recursively by f1 = x, f2 = y
and

fn+1 =
fn + 1

fn−1
. (1)

The first five entries are

x, y,
y + 1

x
,
x+ y + 1

xy
,
x+ 1

y
. (2)

Two surprising/important properties to note:

1. The sixth and seventh entries are x and y respectively, so this sequence is periodic with
period five.

2. Each entry of the sequence is a Laurent polynomial (even with nonnegative integer
coefficients) in the original x and y. We cannot expect this a priori.

You could view this recurrence as the evolution of a ”moving window” consisting of two
consecutive terms fi and fi+1:[

f1
f2

] [
f3
f2

] [
f3
f4

] [
f5
f4

]
...

µ1 µ2 µ1 µ2

where

µ1 :

[
f
g

]
→

[g+1
f

g

]
, µ2 :

[
f
g

]
→

[
f

f+1
g

]
.

Both µ1, µ2 are involutions, so µ2
1 = µ2

2 = 1. Let us refer to these maps as ”mutations” of

the cluster

[
f
g

]
. The 5-periodicity of the recurrence translates into the identity (µ2µ1)

5 = 1.

Thus the group generated by µ1, µ2 is a dihedral group with 10 elements.

Take the algebra generated by the terms of sequence (1) over C (different base rings are
permissible; we’ll get to that later). Since (1) is periodic, this algebra is finitely generated.

A = C
[
x, y,

y + 1

x
,
x+ y + 1

xy
,
x+ 1

y

]

2

Thus it is the coordinate ring of an affine algebraic set. Relations exist among generators.
Embeds in A3 as

C[x, y, z]/(xyz − x− y − 1).

Our strategy with cluster algebras is to find a framework for taking a set of n independent
variables like this, and then proceed to ”mutate” them to obtain new generators for the
cluster algebra. We should then be able to generalise a lot of recurrences similar to this one.
Properties we want:

1. Laurent phenomenon should be ”built in” to our framework: Every new generator of
the cluster algebra should be a Laurent polynomial in the original variables.

2. Total positivity.

1.3 Quivers

A quiver is a finite directed graph. Multiple edges are allowed, but no loops or 2-cycles.

Figure 1: Left: Example of quiver. Right: Non-example.

We can mutate a quiver at a vertex k to get a new quiver on the same number of vertices
using the following procedure:

1. Reverse all arrows incident to vertex k.

2. For every path i→ k → j, add a ”shortcut” i→ j.

3. Cancel out all 2-cycles.

Here is an example.

3

Figure 2: Example of mutating a quiver at vertex 1.

Mutation is an involution (not too obvious immediately, but should be evident from
examples). Quivers are:

• mutation equivalent if there exists a sequence of mutations taking one quiver to the
other. Check this is an equivalence relation. We can then talk about the mutation
class of a quiver.

• mutation finite if the mutation class of the quiver is finite. Easy examples and
nonexamples.

Thanks to result of Felikson, Tumarkin and Shapiro in 2008, we know which quivers are
mutation finite (quivers on two vertices, quivers that come from triangulated surfaces, or
one of 11 exceptional quivers).

1.4 Cluster algebras

Attach algebraically independent variables x1, . . . , xn to the vertices of a quiver to get a seed.
Each vertex corresponds to an exchange relation

xkx
′
k =

∏
i→k

xi +
∏
k→j

xj

The set of variables attached to the quiver is called a cluster. Then when we mutate at vertex
k, we replace xk with x′k as defined by its exchange relation. Cluster algebra is defined to be
the algebra generated by all cluster variables obtainable by mutations.

4

Quiver with two vertices and a single edge corresponds to the pentagon recurrence. We
can form the exchange graph where the vertices are seeds and the edges are mutations.

1+x1

x2
1+x1+x2

x1x2

1+x1

x2

x1

1+x2

x1
1+x1+x2

x1x2

x1

x2

1+x2

x1

x2

µ2

µ1

µ1

µ1

µ2

Note:

1. Notions of mutation equivalence and finite type carry over. Equality of seeds is pretty
much saying there is a permutation of the cluster variables of one quiver that induces
a quiver isomorphism on the underlying quivers.

2. Seed is finite type implies underlying quiver is finite mutation type, but the converse
is not true.

3. Classification of finite type cluster algebras is exactly parallel to Dynkin diagram clas-
sification of semisimple Lie algebras over algebraically closed field.

Note that finite type cluster algebras and quivers are therefore completely understood.

Indeed, this definition of cluster algebras (and quiver mutation) gives us the properties
we want, although this is *not* easy to prove:

• Laurent phenomenon

• Positivity

2 LP algebras

We love the Laurent phenomenon so much, that we will try to define a new type of cluster-
style algebra with clusters that satisfy this property, and allow a strictly greater range of

5

exchange relations than just binomials. We will also hope to get positivity as a consequence.
Maybe then we can also identify when algebras like this arise in the wild.

Motivation: Generalisation as a problem-solving strategy; LP algebras from marked sur-
faces; LP algebras from homogeneous varieties (joint work of me and Tom Ducat); etc.

Introduced by Thomas Lam and Pavlo Pylyavskyy in 2012.

2.1 Seeds

We start by letting A be a UFD over Z. We view A as a coefficient ring. Denote by F the
rational function field in n independent variables over the field of fractions Frac(A).

A seed S is a tuple (x, f), where x = {x1, . . . , xn} is a transcendence basis for F over
Frac(A), and f = {f 1, . . . , fn} is a collection of polynomials in A[x1, . . . , xn] satisfying the
following conditions:

1. (LP1) Each f ℓ is (irreducible) and not divisible by any variable xt,
2. (LP2) f ℓ does not involve the variable xℓ.

We call x the cluster of S. Each element of x is called a cluster variable. Each element of
f is called an exchange polynomial. Note that our exchange polynomials have much more
flexibility than cluster algebra exchange polynomials.

Note the cluster variables and the exchange polynomials are unordered, but the exchange
polynomial f ℓ corresponds to the cluster variable xℓ. Since we have n cluster variables, we
say that S is of rank n..

Let S = (x, f) be a seed. We define the collection f̂ = {f̂ 1, . . . , f̂n} of exchange Laurent
polynomials by the following conditions:

1. f̂ ℓ = fℓ

M
, where M = xc1

1 . . . xcn
n is a monomial in the cluster variables xt, t ̸= ℓ,

2. For each t ̸= ℓ, we have that

f̂ ℓ|xt←f t/x ∈ A[x±11 , . . . , x±1t−1, x
±1, x±1t+1, . . . , x

±1
n],

and f̂ ℓ|xt←f t/x is not divisible by f t as an element of this ring.

Note that the collections {f 1, . . . , fn} and {f̂ 1, . . . , f̂n} determine each other uniquely.
The power of xt in the monomial M is equal to the largest power of f t that divides f ℓ upon
the substitution xt ← f ℓ/x.

Mutation works similarly for cluster variables. Suppose we are mutating at index k. In

6

the cluster algebra set up,

xkx
′
k =

∏
i→k

xi +
∏
k→j

xj

= binomial determined by quiver

In the LP algebra set up,

xkx
′
k = exchange Laurent polynomial at k.

We keep all other cluster variables the same. We also keep the exchange relation at k the
same. However, we replace the exchange relations at other indices as follows:

• Substitution step. We set (
f ℓ
i

)′
= f ℓ|

xi←
ˆ
fi|xℓ←0

yi

.

• Cancellation step. We divide out by any common factors (f ℓ
i)
′ shares with f̂ i|xℓ←0.

This then defines f ℓ
i up to a monomial multiplier.

• Normalisation step. We multiply through by a monomial in x1, . . . , yi, . . . , xn to
make f ℓ

i satisfy (LP1) and (LP2) as an exchange polynomial in Si. Such a monomial
will be uniquely defined only up to a unit. Thus f ℓ

i is only defined up to a unit
multiplier.

Examples:

1. Let

S =


x1 1 + x2 + x3

x2 x1 + x3

x3 x2
1 + x2

Mutate this seed at index three. The first step is to compute the exchange Laurent
polynomials. We do not actually have to divide anything this time, so they’re the same
as the exchange polynomials. Next, we replace x3 with

y3 =
x2
1 + x2

x3

.

Then we replace other exchange polynomials. In index two:

(x1 + x3) |
x3←

x21
y3

= x1 +
x2
1

y3

7

This shares a factor of x1 with f3||x2←0, so we cancel this out, leaving 1+ x1

y3
. Finally we

multiply through by the monomial y3 to get x1 + y3 as the final exchange polynomial.
Similarly with the first exchange polynomial, one eventually gets

x2 ∗ y3 + x2 + y3

which gives a final seed of

S =


x1 x2y3 + x2 + x3,

x2 x1 + y3,

y3 x2
1 + x2.

2. Let

S =

{
x1 1 + x2,

x2 1 + x1.

Exercise: Check that this seed encodes the pentagon recurrence. There should be five
seeds in the exchange graph.

All cluster algebras of the form I gave above give rise to LP algebras (possibly with reducible
polynomials; then we need to take incidence matrix to have primitive columns). But the key
point is that nobody knows the classification of finite-type LP algebra seeds. For example,
initial seed that comes from cluster variety induced by Cayley plane:

x1 1 + y3

x2 x1x3x4 + x1x3 + x1x4 + x1y3 + x3y3 + x3

x3 x2 + x4 + y3

x4 x1x3 + x2x3 + x2 + x3 + y3

y3 x1x2x4 + x1x3x4 + x1x3 + x2x3 + x1x4 + x2x4 + x2 + x3

This has 264 seeds and 32 cluster variables.

3 Linear LP algebras

This section of the talk is about what I have been studying.

3.1 Definition

A linear LP algebra is an LP algebra whose seed pattern contains a seed with linear exchange
polynomials. Note that this does *not* imply all seeds in the pattern are linear. Easy
examples and nonexamples.

8

Lam and Pylyavskyy conjectured in their initial paper that all linear LP algebras are
finite type. Is this true? Yes!

3.2 Graph LP algebras

Given a directed graph Γ, we define an initial seed SΓ with cluster variables {x1, . . . , xn} and
exchange polynomials f ℓ = aℓ +

∑
ℓ→k xk. All LP algebras that arise like this are finite type

(this is the subject of Lam and Pylyavskyy’s second paper).

3.3 Proof that all linear LP algebras are finite type

Start with the fact we already know from Lam and Pylyavskyy: A rank two seed is finite-type
if and only if the product of the degrees of the polynomials is less than 4.

Start with the ”most generic” linear LP algebra with exchange polynomials

f ℓ = aℓ0 +
n∑

i=1,i ̸=ℓ

aℓixi.

I am imposing here that there are no relations among the coefficients ai. Thinking of all
possible linear LP algebra seeds with this many variables parameterised by the coefficients
aℓi , this seed represents a generic point of this space. Using combinatorial arguments, we can
show that seeds like this are finite-type. (Hint: It boils down to the pentagon recurrence!)

1. For a generic seed, mutating at distinct indices means we never have to perform the
cancellation step of mutation. So mutation is just substitution + multiplying by a
monomial.

2. Exchange polynomials stay linear in those variables we have not mutated at yet.

3. Exchange polynomials we have *already mutated at* are linear in the variables we
have *just* mutated at.

4. This means at each step we can either mutate at a variable we have not mutated at
yet, or we can mutate at a variable we have already mutated at, which restricts to two
linear polynomials and is thus finite type (in fact, a pentagon recurrence).

5. Since we have only finitely many variables we have not mutated at yet, the seed is
finite type. We can show this formally by showing that you cannot get distinct seeds
by mutating at rank(S) + 1 indices.

9

Of course, we have modded out some important technical details.

The next step is to show that introducing relations among these coefficients does not
increase the number of seeds in the mutation class. This is something I believe is true for all
seeds, but is something you can show directly for linear seeds. Then *any* linear LP algebra
seed will have finitely many seeds in its mutation class!

4 Code demonstration

The SageMath package I wrote can perform all these computations with LP algebra seeds
over standard base rings (Z,Q,Z[a1, ...an], etc.)

Future plans

1. Come up with a combinatorial model for (linear) LP algebra seeds (scattering dia-
grams?)

2. Show some of the properties I was alluding to earlier for general LP algebra seeds

3. Move away from LP algebras in the abstract and study closer the algebraic geometry
problems that they model/solve

4. Improve my code: Implement graph LP algebras, make it work with reducible polyno-
mials correctly, allow more base rings, maybe add some combinatorial tools.

10

