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Abstract

We present an account of the basic theory of quadratic forms, central simple
algebras over a field, and Milnor’s K-theory, which culminates in a complete
exposition of Alexander Merkurjev’s 2006 proof of the norm residue homomor-
phism of degree two.
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1 Introduction
This is a dissertation dedicated to studying the relationship between different areas
of abstract algebra.

In 1970, John Milnor introduced for each field k a graded-commutative ringKM
∗ (k)

called Milnor’s K-theory in the hope to study the higher algebraic K-theory in the
case of fields. The ring is built on the foundations of a sequence of groups called the
Milnor K-groups KM

n (k) of the field k. It was already known that K0(k) = Z and
K1(k) = k×. His definition was established from Matsumuto’s computation of the K2

of a field, which yields

K2(k) =
k× ⊗Z k

×

(a⊗ (1− a), a ∈ k× \ {1})
. (1)

Milnor essentially took the relations on the tensor product k× ⊗ k× that define the
groupK2 as the only relations on his K-theory. It was expected then that relationships
to other parts of mathematics such as Galois cohomology and the Grothendieck-Witt
ring of quadratic forms would emerge. In particular, he conjectured that there should
be a canonical isomorphism

KM
∗ (k)/2KM

∗ (k)→ grI•(k) (2)

from Milnor K-theory mod 2, to the graded Witt ring of quadratic forms. Indeed,
this conjecture would eventually be proved in 1997 by V. Voevodsky, who also in
2008 completed the proof of the norm residue isomorphism theorem (also known as
the Bloch-Kato conjecture): For each n ∈ N and prime l ∈ N, there is a canonical
isomorphism

KM
n (k)/l→ Hn

et

(
k, µ⊗nl

)
(3)

from the nth Milnor K-group mod l to the nth Étale cohomology group. The work
he did to reach this result earned him the Fields medal in 2002.

Further back in 1981, Alexander Merkurjev proved the following special case of
Milnor’s conjecture: For every field k of characteristic not 2, the norm residue homo-
morphism

hk : K2(k)/2K2(k)→ Br2k (4)

taking the class of a symbol {a, b} to the class of the quaternion algebra (a, b)k is
an isomorphism. His initial proof of this result involved reducing the problem to the
study of a function field of a conic curve and applying results of the higher K-theory
of this curve. Much later in 2006, Merkurjev offered a proof of this result that avoids
the use of higher K-theory, instead relying on the exactness of the sequence

K2k K2k(C)
⊕

p∈C κ(p)
× k×∂ N (5)
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with C a projective conic curve over k, and κ(p) the residue field at the scheme-
theoretic point p. One purpose of this dissertation is to retell the story of this newer
proof in more elementary terms, starting with the basic notions of quadratic forms and
central simple algebras, and culminating with a complete proof of the norm residue
isomorphism theorem in degree 2.

Section 1 of the dissertation is this introduction. Section 2 is a treatment of
the theory of quadratic forms over a field of characteristic not 2. The aim is to
reach the definition of the graded Witt ring, from which it is possible to state the
isomorphism between the former and Milnor K-theory mod 2. Section 3 introduces
the notion of finite-dimensional central simple algebras over a field, including some
aspects of Artin-Wedderburn theory and the definition of the Brauer group of central
simple algebras. We also introduce generalised quaternion algebras and their tensor
products, and carefully study certain constructions derived from these algebras. It
looks carefully at the algebraic geometry of these algebras, in preparation for the proof
of the norm residue isomorphism theorem in degree 2. Section 4 finally introduces
Milnor’s K-theory, by stating the appropriate definitions and illustrating some of
the associated maps on the ring. A particular highlight is the isomorphism between
the second Milnor K-group mod 2 and its image in the graded Witt ring, which
provides a foundation for the profound connection between Milnor K-theory and
quadratic forms. Finally, Section 5 provides a lengthy treatment of an exact sequence
on Milnor K-theory and a variant of Hilbert Theorem 90 for Milnor K-theory, which
serve as cornerstones for Merkurjev’s proof, and ultimately combines these results
into a complete proof of the norm residue isomorphism theorem in degree two. This
section certainly contains the main result of this dissertation. Section 6 concludes the
report with a summary of the material and a brief discussion of mathematics one can
study which builds on the topics of the dissertation.

In terms of background, a mastery of basic abstract algebra is essential, since to
make arguments shorter I assume complete fluency with common algebraic tricks. I
also use routine facts from linear algebra without much comment. A postgraduate
with a specialisation in algebra should be able to follow along with this dissertation
relatively seamlessly. I myself come from a background in commutative algebra,
and so I wrote this dissertation expecting the reader to be completely familiar with
group and ring theory, commutative algebra (on the level of Atiyah-Macdonald), basic
algebraic geometry up to the Riemann-Roch theorem for algebraic curves, and Galois
theory. When noncommutative algebra is required, I develop the theory carefully in
light of my own background.

I thank my supervisor Alexander Vishik who over the course of many meetings
through the academic year 2020-2021 taught me new mathematics, elaborated on
tricky aspects of the present material, and checked my work plenty of times. The
advice he gave me will certainly stick with me throughout my mathematical career.
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2 Quadratic Forms
I learned the theory of quadratic forms from lecture notes produced by my supervisor
for a previous University of Nottingham course. This section is my account of the
theory.

2.1 Definitions

Let k be a field of characteristic not equal to 2. We carry this assumption throughout
the work, unless otherwise stated. This subsection is intended to swiftly cover the
basic definitions and results in the theory of quadratic forms.

There are several equivalent ways to define a quadratic form over a vector space.
In this dissertation, we insist that a quadratic form is the diagonal part of a symmetric
bilinear form Bq on a finite-dimensional vector space V over k. Hence Bq : V ×V → k
is a map such that such that

1. Bq(u1 + u2, v) = Bq(u1, v) +Bq(u2, v),

2. Bq(u, v1 + v2) = Bq(u, v1) +Bq(u, v2),

3. Bq(λu, v) = λBq(u, v) = Bq(u, λv),

4. Bq(u, v) = Bq(v, u)

for all u, v, u1, u2, v1, v2 ∈ V and λ ∈ k, and the corresponding quadratic form q on
V is a map q : V → k such that for any v ∈ V we have q(v) = Bq(v, v). It is
convenient in this discussion to refer to the pair (V, q) as a quadratic space, and when
the underlying vector space is clear, simply denote the pair by q. We also occasionally
slur the distinction between a quadratic space and a quadratic form; provided that
the underlying vector spaces are fixed, this convention carries no risk of ambiguity.
When we want to recover a quadratic space from a quadratic form q we denote the
corresponding vector space by Vq. There is a one-to-one correspondence between
quadratic and symmetric bilinear forms, given by

q(v) = Bq(v, v), Bq(u, v) =
q(u+ v)− q(u)− q(v)

2
.

This justifies occasionally switching language between that of quadratic forms and
that of symmetric bilinear forms.

Given two quadratic spaces (Vq, q) and (Vp, p), we would like to have a good
notion of morphisms between them. We will henceforth call a linear map T : Vq → Vp

5



a morphism of quadratic spaces if it makes the diagram

Vq Vp

k

q

T

p

commutative. If we further assume that T is injective, we get the definition of an
isometric embedding of (Vq, q) into (Vp, p). This notion of maps completes the defi-
nition of the category of quadratic spaces over k. For reference, an isomorphism of
quadratic spaces is an isomorphism T : Vq → Vp such that p ◦ T = q, and such a map
is called an isometry. When we are considering quadratic forms without reference to
the underlying vector space, we write q ∼= p if they are isometric.

We now seek a description of quadratic forms in coordinates. Fix a quadratic
space (V, q). Since V is a finite-dimensional vector space, we may choose a basis
B = {e1, e2, . . . , en} for V . Let u, v ∈ V , and let u = (u1, . . . , un), v = (v1, . . . , vn) be
the coordinates of u and v in this basis. Now the corresponding symmetric bilinear
form Bq may be presented in this basis via

Bq(u, v) = u · A · vt

where Ai,j = B(ei, ej) is a symmetric matrix. What happens if we change bases? Let
B′ = {e′1, e′2, . . . , e′n} be a second basis for V , such that (e1, . . . , en) · C = (e′1, . . . , e

′
n)

for some invertible matrix C. Then, letting v, v′ denote the coordinates of v in the
bases B and B′ respectively, we have vt = C · (v′)t.

Lemma 1. Two symmetric matrices A,A′ represent isomorphic quadratic forms if
and only if there exists an invertible matrix C such that A′ = Ct · A · C.

Proof. First, let A,A′ represent isomorphic quadratic spaces (Vq, q), (Vq′ , q
′) so that

in appropriate bases we may write

q(v) = v · A · vt, q′(v′) = v′ · A′ · v′t

where v, v′ are the coordinates of vectors v ∈ Vq and v′ ∈ Vq′ , and there exists an
isomorphism φ : Vq → Vq′ such that

q(v) = q′(φ(v)).

From the expressions for q and q′ in these coordinates we get that

v · A · vt = v′ · A′ · v′t
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where v′ = φ(v). Now let C be the invertible matrix with column i given by φ(ei) so
that C · vt = v′

t. With this we have

v · A · vt = v′ · A′ · C · vt.

Since this equation holds for all vt, we must have v ·A = v′ ·A′ ·C. Taking transposes,
this implies A · vt = Ct · A′ · v′t (note that A = At and A′ = A′t.) Observing that
v′
t
= C · vt, we get that

A · vt = Ct · A′ · C · vt

Since this holds for all v′t, we conclude

A = Ct · A′ · C

as required. The converse result is established similarly.

Letting A,A′, C as in Lemma 1, we have

det(A′) = det(A) · det(C)2.

which permits us to make the following definition: Let (V, q) be a quadratic space.
Let A be the matrix representing the quadratic form in a given basis for V . Define
the determinant det(q) as det(A). For this to not depend on the choice of matrix
A then we need to consider det(q) as an element of k×/(k×)2 ∪ {0}, where k×/(k×)2
is the quotient group of the multiplicative group k× of the field by the subgroup of
squares. If det(q) = 0 then we say that q is degenerate.

There is a notion of subobjects in the category of quadratic spaces. Let (Vq, q)
be a quadratic space. Suppose (Vp, p) is another quadratic space such that Vp ⊆ Vq
is a vector subspace of Vq, and p = q|Vp is the restriction of q to Vp. We then say
that (Vp, p) is a quadratic subspace of (Vq, q). We often abuse language and just say
that p is a subform of q. Within a fixed quadratic space we may take complements,
so define the orthogonal complement p⊥ to p inside q to be the quadratic subspace
((Vp)

⊥, q|(Vp)⊥), where we define (Vp)
⊥ ⊂ Vq to be the linear subspace consisting of

all those v ∈ Vq such that Bq(u, v) = 0 for any u ∈ Vp, and q(Vp)⊥ is the restriction
of q to this subspace. We may take the orthogonal complement of a quadratic space
within itself; we call the orthogonal complement (V ⊥, 0) of (V, q) in itself the radical
of (V, q).

The notion of orthogonal complements permits a second, equivalent definition to
be made for nondegeneracy of forms:

Proposition 1. A quadratic form q on a vector space V is nondegenerate if and only
if the radical of V is trivial.
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Proof. Suppose that q is degenerate. Then letting A be the matrix of the symmetric
bilinear form corresponding to q in some basis B for V , we have det(A) = 0. Hence
there exists nonzero v0 ∈ V such that Av0 = 0, so that for any v ∈ V , we have

Bq(v, v0) = vAv0
t = 0.

Hence the orthogonal complement is not trivial. Conversely, suppose q is nondegen-
erate. Then det(A) 6= 0, meaning A is nonsingular and hence for any v ∈ V we must
have Av 6= 0. Hence, letting n = dimV , there exists some 1 ≤ i ≤ n such that the
ith coordinate of v in the basis B is nonzero. Then the corresponding basis element
ei ∈ B satisfies

Bq(ei, v) = eiAv
t 6= 0.

So the orthogonal complement is trivial.

Note that if (V, q) is a quadratic space with q nondegenerate, then any morphism
out of (V, q) is an isometric embedding. This is easy to see directly, for given a
quadratic space (W, p), a morphism T : V → W and any v, v′ ∈ V with T (v) = 0,

0 = Bp(0, T (v
′)) = Bp(T (v), T (v

′)) = Bq(v, v
′).

Hence v belongs to the radical of V which is trivial by nondegeneracy. Hence v = 0.

2.2 Operations on quadratic forms

The category of quadratic spaces admits direct sums and tensor products as follows.
Given quadratic spaces (Vq, q), (Vp, p) with Bq, Bp the corresponding symmetric bilin-
ear forms to q and p respectively:

1. We define (Vq, q) + (Vp, p) as the quadratic space (Vq ⊕ Vp, q ⊥ p), where the
form q ⊥ p by definition has corresponding symmetric bilinear form

Bq⊥p((x1, y1), (x2, y2)) := Bq(x1, x2) +Bp(y1, y2). (6)

Alternative notations include (Vq, q) ⊥ (Vp, p) or even just q ⊥ p or q + p when
the underlying vector spaces are clear. We call this the orthogonal sum of the
forms q and p.

2. We define (Vq, q) ⊗ (Vp, p) as the quadratic space (Vq ⊗ Vp, q ⊗ p), where again
q ⊗ p is the quadratic form with corresponding symmetric bilinear form whose
action on elementary tensors is given by

Bq⊗p(x1 ⊗ y1, x2 ⊗ y2) = Bq(x1, x2) ·Bp(y1, y2) (7)
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with which the bilinear form is determined uniquely on the tensor product, by
linearity. We call this the tensor product of the forms p and q. It is sometimes
the case that we denote the product of forms q ⊗ p by qp.

One can easily show that the orthogonal sum is indeed a coproduct in the sense that
it satisfies the following universal property: Given quadratic spaces (V, q) and (W, p),
there are isometries (V, q)→ (V ⊕W, q ⊥ p) and (W, p)→ (V ⊕W, q ⊥ p) such that
for any pair of isometries φ : (V, q)→ (Z, r), ψ : (W, p)→ (Z, r), there exists a unique
isometry φ+ ψ : (V ⊕W, p ⊥ q)→ (Z, r) that makes the diagram

(Z, r)

(V ⊕W, q ⊥ p)

(V, q) (W, p)

φ+ψφ ψ

commute. The isometries (V, q)→ (V ⊕W, q ⊥ p) and (W, p)→ (V ⊕W, q ⊥ p) are
simply those induced by the natural vector space inclusions V → V ⊕W ,W → V ⊕W
respectively.

2.3 Diagonalisation of quadratic forms

We can take an arbitrary quadratic space and decompose it into the direct sum of a
nondegenerate quadratic space with a quadratic subspace whose form is trivial. Such
a decomposition is easy to construct: Let (Vq, q) be a quadratic space, and let V ⊥q be
the radical of Vq. Now let W ⊂ Vq be any linear complement to V ⊥q . Then we call
the quadratic space (W, q|W ) the nondegenerate part of q. The left over part (V ⊥q , 0)
is the radical of q. Note that this decomposition is seemingly not canonical since our
choice of linear complement W was arbitrary, but the following lemma will show that
this choice does not matter:

Proposition 2. 1. (Vq, q) = (V ⊥q , 0) + (W, q|W ).

2. The quadratic space (W, q|W ) is nondegenerate.

3. The quadratic space (W, q|W ) does not depend on the choice of W (up to unique
isomorphism.)

Proof. 1. By the definition of the linear complement we have that V ⊥q ⊕W = Vq.
So we just need to show that the canonical isomorphism V ⊥q ⊕W → Vq preserves
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the form. Let (v, w) ∈ V ⊥q ⊕W , then

B0⊥q|W ((v, w), (v, w)) = B0(v, v) +Bq|W (w,w) = Bq(w,w) = q(w).

On the other hand,

q(v + w) = Bq(v + w, v + w) = Bq(v, v) +Bq(w,w) + 2Bq(v, w)

= Bq(w,w) = q(w)

since v is orthogonal to everything.

2. By virtue of Proposition 1 we just need to show that the radical of (W, q|W ) is
trivial. Let w ∈ W⊥. Then for any w′ ∈ W we have

Bq(w,w
′) = 0.

Furthermore for every v ∈ V ⊥q we have Bq(w, v) = 0 by definition. So for every
v ∈ Vq we have Bq(w, v) = 0, which implies w ∈ Vq. But Vq ∩W = 0, which
implies w = 0.

3. Suppose we have two different choices of linear complement for W . Let us
denote them by W1 and W2. Then we have the following decompositions for
V ⊥q :

W1 ⊕ V ⊥q = Vq = W2 ⊕ V ⊥q . (8)

By inclusion and projection, this induces the following sequence of maps:

W1 Vq W2,
φ

W2 Vq W1.
ψ

(9)

One easily verifies that φψ = idW1 and ψφ = idW2 . So we have a canonical
isomorphism of vector spaces. We just need to show that quadratic forms are
preserved by φ, ψ.

Let w1 ∈ W1. Then by the inclusion W1 → Vq = W2 ⊕ V ⊥q , we may write w1 =
φ(w1)+u for some u ∈ V ⊥q . Hence q(φ(w1)) = q(w1)−2Bq(w1, u)+q(u) = q(w1)
since u ∈ V ⊥q is orthogonal to every vector. So φ is an isomorphism of quadratic
spaces.

Degeneracy of a quadratic form may also be characterised in terms of how non-
injective the corresponding symmetric bilinear form is as a linear map into the dual
space. A perfectly nondegenerate quadratic form will yield an isomorphism, as we
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now show: Let (Vp, p) be a quadratic space. Then p defines a linear map f : Vp → V ∗p
(here V ∗p is the vector dual space to Vp) given by v 7→ Bp(v,−), where the image we
consider as a k−linear map from Vp to k, and call a linear functional on Vp. When
this map is an isomorphism, the form p is nondegenerate, since only 0 maps to the
zero map in V ∗p , and so only 0 ∈ Vp is such that Bp(v, u) = 0 for every u ∈ Vp.
Conversely, if p is nondegenerate, then the only vector v ∈ Vp such that Bp(v, u) = 0
for every u ∈ Vp is the zero vector, so the map f is injective. Hence f is also surjective
by equality of dimensions, and so f is an isomorphism. Thus we obtain another char-
acterisation of nondegenerate quadratic forms: A quadratic form is nondegenerate if
and only if the map f is an isomorphism. In particular, in the nondegenerate case,
every linear functional on Vp may be realised as the dual of some v ∈ Vp.
Proposition 3. Suppose that p ⊂ q is a nondegenerate subform. Then

q = p+ p⊥.

This proposition means that nondegenerate subforms always exist as direct sum-
mands.

Proof. Let φ : Vp ⊕ Vp⊥ → Vq be the canonical map (so that φ(v, v′) = v + v′). We
will show that φ is an isomorphism. Injectivity is equivalent to Vp ∩ Vp⊥ = 0, which
is equivalent to p being nondegenerate. To show surjectivity, let v ∈ Vq, and define
v∗ = Bq(v,−) ∈ V ∗p . By the above discussion with the fact that p is nondegenerate,
we get an identification of Vp with V ∗p , and hence v∗ corresponds to some u ∈ Vp.
By the construction, it means that Bq(v,−) = Bq(u,−) as linear functionals on Vp.
This means that Bq((v − u),−) is the zero map. Hence (v − u) ∈ V ⊥p . So we have
v = u + (v − u) = φ(u, v − u), and hence we have shown surjectivity. Therefore φ is
an isomorphism of vector spaces.

We just need to show that forms are preserved by φ now. Since

q(φ(u,w)) = q(u) + 2Bq(u,w) + q(w) = q(u) + q(w) = (p+ p⊥)(u,w),

this is indeed the case.

Let 0 6= v ∈ Vq. We say that v is isotropic if q(v) = 0. Otherwise we say that v is
anisotropic. We say that the form itself, q, is anisotropic if the corresponding vector
space Vq has no nonzero isotropic vectors. This definition permits the following: If
v ∈ Vq is an arbitrary isotropic vector, and if we let l(v) denote the line in Vq spanned
by v, the quadratic space (Vq, q) decomposes as

(Vq, q) = (l(v), q|l(v)) + (l(v)⊥, q|l(v)⊥).

The reason for this is clear; we can use Proposition 3 as long as we know (l(v), q|l(v))
is nondegenerate, which is indeed the case, since this is equivalent to q(v) 6= 0. We
now turn to an important structure theorem for quadratic forms.
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Theorem 1. Any quadratic form is diagonalisable - that is, may be written as an
orthogonal sum of one-dimensional quadratic forms.

Proof. We use induction on dim(q). Clearly the theorem holds for dim(q) = 0. Now
let n be some nonnegative integer, and suppose dim(q) = n+1, and that the theorem
holds for dim(q) ≤ n. Further assume that q 6= 0, for otherwise such a decomposition
is trivial. Then there exists v ∈ Vq such that q(v) 6= 0. Now use the above discussion
to write

(Vq, q) = (l(v), q|l(v)) + (l(v)⊥, q|l(v)⊥)

and apply the inductive hypothesis to the form (l(v)⊥, q|l(v)⊥), which has dimension
less than or equal to n.

We now introduce some new notation. Let us denote the one-dimensional quadratic
space (k, a · x2) by 〈a〉, and the direct sum 〈a1〉+ 〈a2〉+ · · ·+ 〈an〉 by 〈a1, a2, . . . , an〉.
We call this the diagonal decomposition of a quadratic form. Of course, this needn’t
be unique. For example, we have 〈a〉 = 〈ab2〉.

The diagonal presentations behave well under sums and products. We have for
orthogonal sums

〈a1, . . . , an〉+ 〈b1, . . . , bn〉 = 〈a1, . . . , an, b1, . . . , bn〉

and for tensor products,

〈a1, . . . , an〉 · 〈b1, . . . , bn〉 = 〈a1b1, . . . , a1bn, a2b1, . . . , a2bn, . . . , anbn〉.

2.4 Orthogonal group & Witt cancellation

Now suppose that q is a nondegenerate quadratic form over a field k., so that
k-endomorphisms of quadratic spaces (Vq, q) are isometric embeddings (and hence
isometries). We call such a k-endomorphism φ : V → V orthogonal. If we choose
a basis B for V and for v ∈ V write v = (v1, v2, . . . , vn) in this basis, then letting
B,C be the matrices representing Bq, φ in this basis respectively, the orthogonality
condition translates to (

vt · C
)
·B ·

(
Ct · v

)
= vt ·B · v (10)

which means C · B · Ct = B. Along with the facts that inverse isometries are also
orthogonal transformations and the composition of two orthogonal transformations
is an orthogonal transformation, we deduce that the set of all orthogonal transfor-
mations on Vq form a group with respect to composition. We call this group the
orthogonal group O(q), and it is a subgroup of the general linear group GL(Vq).
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A particularly simple class of element of this group are the so called elementary
reflections, defined for each anisotropic w ∈ Vq by

τw : Vq → Vq

v 7→ v − 2Bq(w, v)

q(w)
· w.

The following proposition shows that τw is indeed a reflection.

Proposition 4. Let (Vq, q) be a nondegenerate quadratic space. Let w ∈ Vq be
anisotropic, and let τw denote the elementary reflection associated to w. Then τw
is an orthogonal transformation of order 2, with τw(w) = −w. Furthermore, τ fixes
a hyperplane.

Proof. We first show τw is orthogonal. Let v ∈ Vq. Then

q

(
v − 2Bq(w, v)

q(w)
· w
)

= q(v)− 4(Bq(w, v))
2

q(w)
+

4(Bq(w, v))
2

(q(w))2
· q(w)

= q(v).

The fact that it has order 2 is a calculation of similar style.We have

τw(w) = w − 2q(w)

q(w)
· w = −w.

And finally, since τw(v) = v is equivalent to Bq(w, v) = 0, and w is anisotropic,
all such vectors v form a hyperplane.

We now seek to use elementary reflections to prove a fundamental theorem in the
theory of quadratic forms, but we need to establish some intermediate results, the
first of which is the lemma that states that we may transport two nonzero vectors
onto each other by a pair of elementary reflections, provided they are sent to the same
nonzero scalar by q. If their difference is anisotropic then one reflection suffices:

Lemma 2. Let u, v ∈ Vq be nonzero, and suppose q(u) = q(v) but not 0. Then there
exists anisotropic w ∈ Vq such that τw(u) = ±v. Furthermore, if u− v is anisotropic,
then there exists w ∈ Vq such that τw(u) = v.
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Proof. Since q(v − u) + q(v + u) = 2(q(v) + q(u)) = 4q(u) 6= 0, one of v − u, v + u
must be anisotropic. Denote the anisotropic vector by w. Then

τw(u) = u− 2Bq(w, u)

q(w)
w = u− 2Bq((v ± u), u)

Bq(v ± u, v ± u)
(v ± u)

= u− 2(Bq(v, u)±Bq(u, u))

Bq(v, v) +Bq(u, u)± 2Bq(v, u)
(v ± u)

= u∓ 2(Bq(v, u)±Bq(u, u))

2(Bq(v, u)±Bq(u, u))
(v ± u)

= u∓ (v ± u) = ∓v.

If v − u is anisotropic, just take w = v − u and then τw(u) will be equal to v.

We can extend this idea further in the following theorem, which shows that any
orthogonal transformation is composed of a sequence of elementary reflections of finite
length.

Theorem 2. Let (Vq, q) be a nondegenerate quadratic space with dimVq = n. Let
φ ∈ O(q) be an orthogonal transformation. Then there is a sequence of anisotropic
vectors v1, . . . , vm ∈ Vq with 1 ≤ m ≤ 2n such that φ = τv1 ◦ · · · ◦ τvm. Moreover, if q
is anisotropic, then m ≤ n.

Proof. Induction. For n = 0, there is nothing to prove. Next, suppose n ∈ N is such
that the statement is true for all k < n. We are assuming q is nondegenerate, so there
exists x1 ∈ Vq such that q(x1) 6= 0. Since φ is orthogonal, q(φ(x1)) = q(x1). Now
using Lemma 2, there exists v1 ∈ Vq such that τv1(φ(x1)) = ±x1. If the sign is a plus,
then put ψ = τv1 ◦ φ. Otherwise take v2 = x1, and set ψ = τv2 ◦ τv1 ◦ φ.

In either case, ψ an orthogonal transformation satisfying ψ(x1) = x1, so that the
line l = k · x1 is stable under ψ, and hence l⊥ is also stable. But dim l⊥ = n− 1, and
so the inductive hypothesis implies that there exists v3, . . . , vm ∈ l⊥ with 3 ≤ m ≤ 2n
such that ψ|l⊥ = τv3|l⊥ ◦ · · · ◦ τvm|l⊥ . We have τv3 |l ◦ · · · ◦ τvm|l = idl = ψ|l. Because
Vq = l⊕ l⊥, we conclude ψ = τv3 ◦· · ·◦τvm . Then either φ = τv1 ◦τv2 ◦ψ, or φ = τv1 ◦φ,
so that φ is a product of no more than 2n elementary reflections.

For the second part, notice that if q is anisotropic, in the induction step in the
argument above, we have that φ(x1)− x1 is either zero or anisotropic, so that we can
take ψ equal to either φ or τ(φ(x1)−x1) ◦ φ respectively. Passing over from the n − 1
case to the n case, we get at most one extra reflection. So the total number cannot
be more than n.

We now reach our key theorem of this subsection:
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Theorem 3. (Witt Cancellation.) Let p, q1, q2 be quadratic forms such that

q1 ⊥ p ∼= q2 ⊥ p.

Then q1 ∼= q2.

Proof. We may assume without loss of generality that dim p = 1, since over a field
of characteristic not 2 every quadratic form is diagonalisable. We will show the
proposition in the case that q1, q2 and p are nondegenerate. Then since (q1 ⊥
p)nondeg = q1nondeg ⊥ pnondeg = (q2 ⊥ p)nondeg = q2nondeg ⊥ pnondeg, Witt Cancella-
tion in this case gives that q1nondeg = q2nondeg. And since q1 = q1nondeg ⊥ (U, 0) and
q2 = q2nondeg ⊥ (V, 0) with dimU = dimV = dim q1 − dim q1nondeg, the two forms
q1, q2 are isomorphic.

Now the proof; since p is nondegenerate, we can write p = 〈a〉 for some a ∈ k×.
Let us write q1 ⊥ p = r = q2 ⊥ p. Let j1 : p ↪−→ r and j2 : p ↪−→ r be the
respective inclusions of p into r induced by the two decompositions above. Further, let
j1(Vp) = l1 ⊂ Vr and j2(Vp) = l2 ⊂ Vr. By our initial assumption that dim p = 1, these
are one dimensional subspaces. There exist x1 ∈ l1, x2 ∈ l2 with r(x1) = r(x2) = a,
and r|l⊥1

∼= q1, r|l⊥2
∼= q2. Hence by Lemma 2, there exists anisotropic w ∈ Vr with

τw(x1) = ±x2. We have τw(l⊥1 ) = l⊥2 , and it is an orthogonal transformation, so it
identifies r|l⊥1 = q1 with r|l⊥2 = q2. Hence q1 ∼= q2.

2.5 Hyperbolic forms

The canonical example of a quadratic form in linear algebra is the form corresponding
to the Euclidean inner product on Rn. One key feature of this form is that it is
positive-definite, so in particular it is anisotropic. In the general theory of quadratic
forms over a field, there may exist nonanisotropic subspaces, the simplest example of
which being the hyperbolic plane H whose diagonal presentation is given by

H = 〈1,−1〉.

Lemma 3. Let q be a nondegenerate 2-dimensional quadratic form. The following
are equivalent:

1. q ∼= H,

2. q is isotropic,

3. det(q) = −1.
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Proof. 1 =⇒ 3: Immediate.
3 =⇒ 2: Since det(q) = −1, we must have that q ∼= 〈d,−d〉 for some d ∈ k×. Then
(1, 1) is an isotropic nonzero vector.
2 =⇒ 1: Since q is diagonalisable, we may write q = 〈a,−b〉 for some a, b ∈ k×.
Now isotropy implies there exists nonzero (x, y) such that ax2 − by2 = 0. Then both
x and y are nonzero, and a/b ∈ (k×)2. Hence 〈a,−b〉 ∼= a · 〈1,−1〉. Now we note that
for any α ∈ k× the form 〈α,−α〉 = αx2 − αy2 is isometric to xy. The corresponding
isometry in coordinates is given by

x 7→ x+ αy

2α
, y 7→ x− αy

2α
.

Indeed, we have

α

(
x+ αy

2α

)2

− α
(
x− αy
2α

)2

=
x2 + 2αxy + α2y2 − x2 + 2αxy − α2y2

4α

=
4αxy

4α
= xy,

and so our change of coordinates carries one form over to the other. In particular,
this fact implies that a · 〈1,−1〉 ∼= 〈1,−1〉 = H, which is what we wanted.

We hence see that a (nondegenerate) 2-dimensional isotropic quadratic form is
necessarily isometric to the hyperbolic plane. We now generalise this to higher di-
mensions.

Lemma 4. Let q be a nondegenerate quadratic form. If q is isotropic, then q = H ⊥ q′

for some quadratic form q′.

Proof. Pick an isotropic nonzero vector v ∈ Vq; it is enough to show there exists an
embedding H ⊂ q such that v ∈ VH. Since q is nondegenerate, there exists u ∈ Vq with
Bq(u, v) 6= 0. Hence u, v are linearly independent, and so generate a two dimensional
subspace U ⊂ Vq. Let M be the matrix of the restriction q|U in the basis B = {u, v}.
Then

M =

(
0 Bq(u, v)

Bq(u, v) q(u)

)
. (11)

A direct calculation shows this form is nondegenerate and isotropic. Hence it is
isomorphic to H by Lemma 3. By the construction, v ∈ U = VH.

We now introduce an invariant of quadratic spaces which measures in a suitable
sense the "degree of isotropy". We say that a subspace consisting entirely of isotropic
vectors is called a totally isotropic subspace. To describe the maximal size of a totally
isotropic subspace we use the following proposition:
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Proposition 5. Let q be a nondegenerate quadratic form. The following conditions
are equivalent:

1. Vq contains a totally isotropic subspace of dimension m.

2. q = (⊥mi=1 H) ⊥ q′′ for some quadratic form q′′.

Proof. First, suppose q = (⊥mi=1 H) ⊥ q′′. Let us write the corresponding symmet-
ric bilinear form B⊥m

i=1H as x1y1 + · · · + xmym for an appropriate choice of basis.
Clearly the m−dimensional subspace y1 = · · · = ym = 0 of V⊥m

i=1H is totally isotropic,
and since V⊥m

i=1H ⊂ Vq, the latter contains a totally isotropic subspace of dimensionm.

For the other direction, we use induction on m. For m = 0 there is nothing to prove.
Now suppose that Vq contains contains an m dimensional totally isotropic subspace
U . Let u ∈ U be nonzero, and let L = k · u be the line spanned by u. By Lemma 4,
we get an embedding H ⊂ q with u ∈ VH. Then, since q is nondegenerate, we have
q = H ⊥ q′ where q′ is the orthogonal complement to H inside q. We have that q′
is nondegenerate, and Vq′ = (VH)

⊥ ⊂ L⊥. But on the other hand, L⊥ ⊃ U⊥ ⊃ U ,
since any two v, w ∈ U are orthogonal, so Vq′ and U are both subspaces of L⊥. Since
dim(q′) = dim(q)−dim(H) = dim(q)−2 and dim(L⊥) = dim(q)−dim(L) = dim(q)−1,
Vq′ has codimension 1 in L⊥. Since the codimension of Vq′ ∩ U inside U is not more
than the codimension of Vq′ inside L⊥, we get that dim(Vq′ ∩ U) is greater than or
equal to (m − 1), so that in Vq′ we have a totally isotropic subspace of dimension
at least m − 1. Hence by the inductive assumption, q′ = (⊥m−1i=1 H) ⊥ q′′ for some
quadratic form q′′. Hence q = H ⊥ q′ = (⊥mi=1 H) ⊥ q′′.

We call the form ⊥mi=1 H a hyperbolic form. Therefore the "degree of isotropy" of
the quadratic form q can be measured by the size of the hyperbolic form contained
in it. Now we define the Witt index iW (q) of q as the maximal m such that ⊥mi=1 H
is a direct summand of q. The form qan such that q = (⊥mi=1 H) ⊥ qan is called
the anisotropic part or anisotropic kernel of q. Of course, this form is anisotropic
by Lemma 4 along with the maximality of m. By Witt Cancellation, the form qan
is uniquely determined up to isomorphism. And so to each quadratic form we have
associated two invariants: The Witt index iW (q) and the anisotropic part qan. The
pair (iW (q), qan) determines the quadratic form q entirely, up to isomorphism. In
this way we have "reduced" all nondegenerate forms to anisotropic ones, modulo a
nonnegative integer.

2.6 Grothendieck group

Now we wish to construct a commutative ring whose elements are derived from the
quadratic spaces over a given field. It is clear that isomorphism classes of quadratic

17



spaces over a fixed field with the orthogonal sum as an operation form a commutative
monoid with the unique 0-dimensional quadratic space as the identity element. But
nontrivial elements of this monoid do not have inverses, by dimension considerations.
So in our endeavour to assemble a commutative ring of quadratic spaces, we need to
somehow complete this monoid to an abelian group. Indeed, given an arbitrary com-
mutative monoidM , one can produce an abelian group G(M) called the Grothendieck
group out of it in a universal way. Specifically, we define G(M) as the group with a
fixed morphism of monoids i : M → G(M) such that for any abelian group H and
morphism of monoids j : M → H, there exists a unique morphism of abelian groups
f : G(M)→ H that makes the following commute:

M G(M)

H

i

j
f

So the Grothendieck group, if it exists, is the smallest abelian group containing M .
It is an example of a free functor from the category of commutative monoids to the
category of abelian groups.

Proposition 6. The Grothendieck group exists for a given commutative monoid M ,
and is unique up to isomorphism.

Proof. We construct the Grothendieck group as follows. Let G be the set of formal
differences [a]− [b], where a, b ∈M . Now let ∼ be the equivalence relation defined by

[a]− [b] ∼ [c]− [d] ⇐⇒ ∃e ∈M such that a+ d+ e = b+ c+ e.

Now let G(M) be the set of equivalence classes of G, with the group operation given
by

([a]− [b]) + ([c]− [d]) := [a+ c]− [b+ d]

and inverse given by
−([a]− [b]) := [b]− [a].

One can check that these operations are well-defined and give G(M) the structure
of an abelian group. Then the natural map of monoids i : M → G(M) is given by
a 7→ [a]− [0].

Let j : M → H be a morphism of monoids. Let f : G(M) → H be defined by
[a] − [b] 7→ j(a) − j(b). This homomorphism does not depend on the choice of rep-
resentatives, since if [a] − [b] = [c] − [d] we have a + d + e = b + c + e for some
e ∈ M , so that f([a] − [b]) − f([c] − [d]) = j(a) − j(b) − j(c) + j(d) + j(e) − j(e) =
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j(a+d+e)−j(b+c+e) = 0. And indeed, this choice of f makes the diagram commute.

Let us now show the group G(M) is unique up to isomorphism. Suppose we have two
such groups G(M) and G′(M) with natural maps i : M → G(M), i′ : M → G′(M).
Then by the universal property there exists unique homomorphisms f : G(M) →
G′(M), g : G′(M)→ G(M) that make the following commute:

M G(M)

G′(M)

i

i′
fg (12)

Now observe that the compositions g◦f = idG(M) and f ◦g = idG′(M) by the universal
property applied to the diagrams

M G(M)

G(M)

i

i
idid (13)

and
M G′(M)

G′(M)

i′

i′
idid (14)

and so the groups are isomorphic.

We can characterise the injectivity of the natural map embedding M into G(M)
in the following lemma:

Lemma 5. The natural map i introduced above is injective if and only if the commu-
tative monoid M has the cancellation property, that is for any a, b, e ∈M ,

a+ e = b+ e =⇒ a = b.

Proof. Suppose i is injective and a, b, e ∈ M are such that a + e = b + e. Then
[a]− [0] = [b]− [0], so i(a) = i(b). By injectivity, we have a = b.

Conversely, suppose M has the cancellation property. Let a, b ∈ M and suppose
i(a) = i(b). Then [a] − [0] = [b] − [0], which implies a + e = b + e for some e ∈ M .
Applying the cancellation property gives a = b.
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2.7 Witt ring of quadratic forms

Pulling back to quadratic forms, recall that isomorphism classes of quadratic spaces
form a commutative monoid M with respect to the orthogonal sum operation ⊕.
Furthermore, due to the Witt cancellation theorem, this monoid enjoys the cancella-
tion property. Hence it embeds into its respective Grothendieck group. We denote
the Grothendieck group of the monoid of isomorphism classes of quadratic spaces
by W̃ (k). On the set of isomorphism classes of quadratic spaces we have another
associative, commutative operation given by the tensor product of quadratic spaces
⊗. This is compatible with the monoid structure M and thus induces an associative
commutative operation on W̃ (k), which provides the latter with the structure of a
commutative ring, called the Witt-Grothendieck ring of quadratic forms over k. The
multiplicative identity is the quadratic space 〈1〉. Now consider the element [H]− [0]

in W̃ (k). By virtue of M embedding into W̃ (k), we can denote this element simply
by H. Let L denote the cyclic subgroup generated by H.

Lemma 6. The subgroup L ⊂ W̃ (k) is an ideal.

Proof. Let [p]−[q] ∈ W̃ (k) be arbitrary. We need to show that ([p]−[q])·H ∈ L. Since
([p]− [q]) ·H = [p ·H]− [q ·H], and since 〈a〉 ·H is a 2-dimensional isotropic form, by
the proof of Lemma 3 we have 〈a〉 ·H = H. Hence we have p ·H = H ⊥ H ⊥ · · · ⊥ H
with number of summands equal to dim p, so that ([p ·H]− [q ·H]) ∈ L. Hence L is
an ideal.

We denote the quotient ring W̃ (k)/L byW (k) and call it theWitt ring of quadratic
forms over k. Now the following proposition will show that the Witt ring essentially
classifies quadratic forms who have the same underlying anisotropic kernel:

Proposition 7. The following conditions are equivalent:

1. Quadratic forms p and q represent the same class in W (k).

2. The form p ⊥ −q is hyperbolic.

3. pan = qan.

Proof. (1 ⇐⇒ 2) We first note that in the Witt ring we have for any form
q, −([q] − [0]) = ([−q] − [0]), since the form q ⊥ −q is hyperbolic and hence
[q ⊥ −q]− [0] = 0 in W (k). Suppose that forms p and q represent the same class in
W (k), so that ([p]−[0])−([q]−[0]) ∈ L. Then equivalently we have ([p ⊥ −q]−[0]) ∈ L,
so that p ⊥ −q is hyperbolic.
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(3 =⇒ 1) Suppose p, q are forms such that pan = qan. Denote pan = r = qan.
Then we may write p =⊥ni=1 H ⊥ r, q =⊥mi=1 H ⊥ r, and so

[p]− [0] + L = [r]− [0] + L = [q]− [0] + L.

(2 =⇒ 3) Suppose p ⊥ −q is hyperbolic. We may decompose p =⊥ni=1 H ⊥ pan,
q =⊥mi=1 H ⊥ qan for some n,m ∈ N. Then we must have

(pan ⊥ −qan) ⊥n+mi=1 H =⊥lj=1 H

for some l ≥ n+m.Then applying Witt cancellation, we must have

(pan ⊥ −qan) =⊥l−n−mj=1 H.

So pan ⊥ −qan is hyperbolic. Let us relabel s = l − n−m. We see that dim pan ≤ s,
since by Proposition 5 we have that ⊥sj=1 H contains a totally isotropic subspace
of dimension s. So if dim pan > s they would intersect nontrivially, contracting
anisotropy of pan. Similarly we see that dim qan ≤ s. Then the equality above gives
dim qan + dim pan = 2s, and hence dim pan = dim qan = s. Now from the equalities

pan ⊥ −qan =⊥sj=1 H = qan ⊥ −qan

and the Witt cancellation theorem, we see that pan = qan.

The above proposition implies that the elements of the Witt ring are in one-to-one
correspondence with the isomorphism classes of anisotropic quadratic forms. Hence
to calculate the elements of the Witt ring W (k) it is sufficient to list out all of the
nonisomorphic anisotropic forms over k. The following examples elaborate on this.

Example 1. 1. Let k = C. Then W (k) = Z/2, since the only anisotropic forms
over C are the zero-dimensional form and the form 〈1〉. There is only one
possible ring structure.

2. Let k = R. ThenW (k) = Z, since the anisotopic forms over R are of three types:
0−dimensional forms, n−dimensional forms ⊥ni=1 〈1〉, and n−dimensional forms
⊥nj=1 〈−1〉, n ∈ N. And by identifying these with 0, n and −n respectively, we
see that the sum and product operations match those in Z.

3. For k = Fq in odd characteristic, the Witt ring always consists of 4 elements.
We have

W (k) =

{
Z/2Z[t]/(t2), q ≡ 1 (mod 4),

Z/4Z, q ≡ −1 (mod 4).
(15)

This is due to the following:
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Lemma 7. A quadratic form over Fq of dimension at least 3 is isotropic.

Proof. It is sufficient to show that a quadratic form over Fq of dimension exactly
3 is isotropic. So let p = 〈a, b, c〉 with a, b, c ∈ F×q be a quadratic form, and let
(x, y, z) be an isotropic vector for p. Then we have

ax2 + by2 + cz2 = 0. (16)

Any scalar multiple of (x, y, z) is also a solution of Equation 16, so we may
assume, reordering coordinates if necessary, that z = 1. Then it is sufficient
to find some t ∈ (Fq)2 such that we have at = −bt − c. But now observe that
since Fq is a finite field, the multiplicative group F×q has order q − 1 and thus
the subgroup of squares (F×q )2 has order (q − 1)/2. So including zero we have
(q + 1)/2 such elements. Now observe that the sets

A := {at | t ∈ (F×q )2 ∪ {0}}, B := {−bt− c | t ∈ (F×q )2 ∪ {0}}

each have cardinality (q + 1)/2 and are subsets of Fq, hence their intersection
must be nonempty. So indeed we have t ∈ (F×q )2 ∪ {0} such that at = −bt− c.
Then choosing s ∈ F×q with s2 = t, the nonzero vector (s, s, 1) is isotropic, and
we are done.

Now there is only one zero-dimensional form over Fq, the quadratic form 0.
We know that one-dimensional forms are in bijection with square classes in
F×q , that is, elements of F×q /(F×q )2 = Z/2Z. So there are only two forms up
to isomorphism, the form 〈1〉 and the form 〈α〉, where α is not a square in
F×q . Clearly all of the one-dimensional forms are anisotropic. Finally, given
a two-dimensional quadratic form r, the form r ⊥ 〈−1〉 is three-dimensional,
hence isotropic by Lemma 7 and thus 〈1〉 is a subform of r. So we may write
r = 〈1,−d〉 for some d ∈ k×, which gives rise to two separate isomorphism
classes of quadratic forms: Either r = 〈1,−1〉 is hyperbolic, or r = 〈1,−α〉 is
anisotropic. So in total we have four nonisomorphic anisotropic quadratic forms
over Fq, namely

0, 〈1〉, 〈α〉, 〈1,−α〉.

There are two possible ring structures on this set. We list the cases:

(a) q ≡ 1 (mod 4). Then −1 is a square in Fq, and hence W (k) has charac-
teristic two, since 〈1〉 + 〈1〉 = 〈1, 1〉 = 〈1,−1〉 = 0 ∈ W (k). Hence W (k)
is a two-dimensional Z/2Z-vector space, and denoting 1 = 〈1〉, t = 〈α〉, we
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may choose the basis 〈1, t〉. Now due to the relation t2 = 〈α2〉 = 〈1〉 = 1
and the fact that 1 is a unit, we see that

W (k) = Z/2Z[t]/(t2 − 1)

in this case. And clearly we have an isomorphism Z/2Z[t]/(t2 − 1) →
Z/2Z[t]/(t2) by swapping t and t+ 1.

(b) q ≡ −1 (mod 4). Then −1 is not a square in Fq. So our unit for mul-
tiplication 〈1〉 has order 4, since 〈1〉 + 〈1〉 = 〈1, 1〉 6= 〈1,−1〉, we see 〈1〉
has order greater than 2, and, since the underlying abelian group of W (k)
must have order 4 and the order of 〈1〉 divides 4, we see that the order of
〈1〉 is exactly 4. So the underlying abelian group is cyclic of order 4, with
generator equal to the unit for multiplication. It follows that

W (k) = Z/4Z.

in this case.

2.8 Graded Witt ring & Pfister forms

By considering powers of even-dimensional quadratic forms in W (k), we obtain a
multiplicative filtration, from which we may define a ring auxiliary of W (k) whose
structure is easier to study. First, let dim : W̃ (k) → Z be such that [p] − [q] 7→
dim(p) − dim(q), where dimensions are of the underlying vector spaces of the forms
p, q. One can check that dim is a well-defined ring homomorphism. Notice that
L = 〈H〉 consists of even-dimensional forms only, since H has dimension 2. This
means that there exists a unique homomorphism dimZ/2 : W (k) → Z/2 that makes
the diagram

W̃ (k) Z

W (k) Z/2

dim

dimZ/2

commutative. We let I denote the kernel of the homomorphism dimZ/2, and call it
the fundamental ideal of the Witt ring. It consists of classes of even-dimensional
quadratic forms. Taking successive powers In for n ∈ N of the ideal I introduces a
multiplicative filtration

W (k) ⊃ I ⊃ I2 ⊃ · · · ⊃ In ⊃ . . .
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on W (k). That is, In · Im ⊂ In+m for all n,m ∈ N. From here, we introduce a new
ring. Let I, W (k) be as above. Introduce the associated graded ring to W (k) as the
ring

grI•(k) =
∞⊕
n=0

In/In+1 = W (k)/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .

with the inherited addition and multiplication from W (k).
We now introduce a class of quadratic forms called Pfister forms. First, we define

a 1-fold Pfister form as the form 〈〈a〉〉 for a ∈ k×, where

〈〈a〉〉 := 〈1,−a〉.

Then we define an n-fold Pfister form 〈〈a1, a2, . . . , an〉〉 by

〈〈a1, a2, . . . , an〉〉 = 〈a1〉 · 〈a2〉 · · · · · 〈an〉.

A remarkable property of these forms is the following:

Theorem 4. If an n-fold Pfister form is isotropic, then it is hyperbolic.

Proof. A proof is found in [5].

Now we define the Albert form A{a,b}+{c,d} in diagonal presentation as the form

A{a,b}+{c,d} := 〈c, d,−cd,−a,−b, ab〉.

It can be easily seen that in the Witt ring, we have A{a,b}+{c,d} = 〈〈a, b〉〉 − 〈〈c, d〉〉.
We will revisit these forms later in the dissertation.

Any binary form 〈a, b〉 ∈ W (k) can be written as a difference of 1-fold Pfister
forms 〈〈−a〉〉, 〈〈b〉〉 since

〈a, b〉 = 〈1,−(−a)〉 − 〈1,−b〉

and hence I is additively generated by 1−fold Pfister forms. So I2 is additively
generated by 2−fold Pfister forms.

Proposition 8. Let grI•(k)n denote the nth component of grI•(k).

1. grI•(k)1 = Z/2.

2. grI•(k)2 = k×/(k×)2.

Proof. 1. We need to show thatW (k)/I ∼= Z/2. Since dimZ/2 is surjective and has
kernel equal to I, the result follows.
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2. First, define φ1 : k×/(k×)2 → I/I2 by a 7→ 〈〈a〉〉 mod I2. Let us show this
map only depends on the square class of a. We have

φ1(a · b2) = 〈〈a · b2〉〉 = 〈1,−a · b2〉 = 〈1,−a〉 = 〈〈a〉〉 (mod I2).

Next, let us show that φ1 is a homomorphism from k×/(k×)2 to the underlying
abelian group of I/I2. We have

φ1(a) + φ1(b)− φ1(a · b) = 〈〈a〉〉+ 〈〈b〉〉 − 〈〈a · b〉〉 (mod I2)
= 〈1,−a〉+ 〈1,−b〉 − 〈1,−ab〉
= H+ 〈1,−a,−b, ab〉
= 〈1,−a,−b, ab〉 = 〈〈a, b〉〉 ∈ I2.

We get that φ1 is surjective since I is additively generated by 1-fold Pfister
forms. Now we claim that φ1 is an isomorphism. To show this, we produce the
inverse map.

Let q be a quadratic form. We define the signed discriminant det±(q) of q by
the formula

det
±
(q) = (−1)[dim(q)/2] · det(q).

This is a well-defined function on W (k), since we have the function on the
Grothendieck-Witt ring

det
±

: W̃ (k)→ k×/(k×)2,

[p]− [q] 7→ (−1)[
dim(p)−dim(q)

2 ] · det(p)
det(q)

,

which is clearly well-defined and coincides with the above definition for the
classes of the form ([p]− [0]) (note we take det(0) = 1). We see that det±(x +
y) = det±(x) · det±(y) if at least one of the forms x, y is even-dimensional.
In particular it is additive on L, since every form on L has even dimension.
Furthermore, since we have det±(H) = (−1)1 · (−1)

1
= 1, the map is trivial on

all of L. Hence for any x ∈ W̃ (k) and y ∈ L we have

det
±
(x+ y) = det

±
(x) · det

±
(y) = det

±
(x)

and so det± descends to a well-defined function on W (k) as was first claimed.
The descent is additive when we restrict it to I ⊂ W (k), since by definition
every element of I has even dimension.
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Now we claim that det± : I/I2 → k×/(k×)2 is a well-defined group homomor-
phism, inverse to the map φ1. We already know it is additive. To show it is
well-defined, we need to show it is trivial on I2. But since I2 is additively gen-
erated by 2-fold Pfister forms, we only need to show it is trivial on 〈〈a, b〉〉. We
have

det
±
(〈〈a, b〉〉) = det

±
(〈1,−a,−b, ab〉) = (−1)2 · 1 · (−a) · (−b) · (ab)

= (ab)2

= 1 (mod (k×)2).

Hence det± : I/I2 → k×/(k×)2 is a well-defined group homomorphism. To show
it is inverse to φ1, let us compute the composition in both ways. On the one
hand,

det
±
◦φ1(a) = det

±
(〈〈a〉〉) = (−1) · 1 · −a = a.

On the other hand, since φ1 is surjective, the composition φ1 ◦ det± = idI/I2 ,
and so φ1, det± are inverse isomorphisms.

The isomorphism constructed above lets us characterise the forms inside I2: They
have even dimension (since I2 ⊂ I) and they have trivial signed discriminant.
Example 2. Let us see some examples of the associated graded ring to W (k) for
some choices of field k.

1. Let k = R. Then W (k) = Z and by this isomorphism, I = 2Z. So In = 2n ·Z ⊂
Z. Hence

grI•R =
∞⊕
n=0

(2nZ/2n+1Z) =
∞⊕
n=0

(Z/2) · tn

where t = 2; hence grI•R = Z/2[t].

2. Let k = Fq be a finite field of odd characteristic. Again, assume that α ∈ Fq
is not a square. Then W (k) consists of only one non-trivial even-dimensional
anisotropic form 〈〈α〉〉, in which case I = {0, 〈〈α〉〉}, and thus I2 = 0. Hence
all the graded components grI•(k)n are trivial for n ≥ 2. We see that

grI•Fq = Z/2⊕ Z/2
as an abelian group.

Pfister forms are especially important since they appear as the norm forms for
an important class of algebras called quaternion algebras. Furthermore, Albert forms
appear as norm forms for so-called biquaternion algebras. We shall meet both of
these algebras later in the next section, which introduces the notion of central simple
algebras over a field.
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2.9 Witt Chain Equivalence

This subsection introduces a technique that is useful in later proofs. Suppose 〈a1, . . . , an〉,
〈b1, . . . , bn〉 are two quadratic forms. We say these two forms are elementary equiv-
alent if we can choose two (not necessarily distinct) indices 1 ≤ i, j ≤ n such that
al = bl for any l 6= i, j, and 〈ai, aj〉 ∼= 〈bi, bj〉. And we say 〈a1, . . . , an〉 and 〈b1, . . . , bn〉
are chain equivalent, denoted c∼, if there exists a sequence of elementary equivalences
that takes 〈a1, . . . , an〉 to 〈b1, . . . , bn〉. Chain equivalence is an equivalence relation,
and for quadratic forms chain equivalent implies isomorphic. Immediately we get:

Theorem 5 (Witt Chain Equivalence). Any two diagonalisations of the same non-
degenerate quadratic form are chain equivalent.

Proof. Let q be a nondegenerate quadratic form. We induct on n = dim q. For n ≤ 2,
there is nothing to prove. Suppose any two diagonalisations of a non-degenerate
(dim q − 1)-form are chain equivalent and suppose 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are
two diagonal presentations of the same quadratic form; we must show that they are
chain equivalent. First, a1 is a value of q, so we may write it as a1 = b1x

2
1 + · · · +

bnx
2
n for some choice of x1, . . . , xn ∈ k. Assume that, among all such (x1, . . . , xn),

our choice has the minimal number s of nonzero components. Then, ignoring the
zero terms, we can write a1 = bi1x

2
i1
+ · · · + bisx

2
is . Next, since the group Sn is

generated by transpositions, any diagonalisation 〈bσ(1), . . . , bσ(n)〉 is chain equivalent
to the form 〈b1, . . . , bn〉. In our situation, this means we can assume that il = l for
all 1 ≤ l ≤ s. Now we claim that s = 1 (and we will prove this soon). We have
a1 = b1 · x21 and so 〈b1, b2, . . . , bn〉

c∼ 〈a1, b2, . . . , bn〉. Hence by Witt Cancellation, the
forms 〈b2, . . . , bn〉 and 〈a2, . . . , an〉 are isomorphic. By the inductive hypothesis on n,
we have 〈b2, . . . , bn〉

c∼ 〈a2, . . . , an〉. So 〈a1, . . . , an〉
c∼ 〈a1, b2, . . . , bn〉

c∼ 〈b1, . . . , bn〉.
Now suppose for contradiction that s ≥ 2. Then letting d = b1x

2
1 + b2x

2
2, we have

d 6= 0. Hence 〈x1, x2〉 ∼= 〈d, x1x2d〉, since det(〈x1, x2〉) = det(d, x1x2d〉) and d is
a common value of both forms. So 〈b1, b2, b3, . . . , bn〉

c∼ 〈d, dx1x2, b3, . . . , bn〉. Now
a1 = d+ b3x

2
3+ · · ·+ bnx2n = d+ b3x

2
3+ · · ·+ bsx2s. But this contradicts the minimality

of s.

Chain equivalence lets us describe the Witt-Grothendieck ring W̃ (k) in terms of
generators and relations.

Proposition 9. The ring W̃ (k) is isomorphic to the quotient of the free associative
algebra generated by the formal symbols 〈a〉, a ∈ k∗, with the following relations:

1. 〈x2〉 = 1,
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2. 〈a〉 + 〈b〉 = 〈c〉 + 〈d〉 for all a, b, c, d ∈ k∗ with abcd ∈ (k∗)2 and there exists
x, y ∈ k with c = ax2 + by2.

3. 〈a〉 · 〈b〉 = 〈ab〉.

Proof. Denote this ring by R. Let φ : R→ W̃ (k) be defined by 〈a〉 7→ [a]−[0]. Clearly
this homomorphism is well-defined, since all the relations in R are respected in W̃ (k).
Clearly φ is surjective. Let us show φ is injective. Let

∑s
i=1〈ai〉 −

∑l
j=1〈bj〉 = u ∈

kerφ. Then φ(u) = [〈a1, . . . , as〉]− [〈b1, . . . , bl〉] = 0. Using the relations in W̃ (k) and
Witt Cancellation, this means 〈a1, . . . , as〉 and 〈b1, . . . , bl〉 are isomorphic; in partic-
ular, this means l = s. Using Witt Chain Equivalence, we have that 〈a1, . . . , as〉 and
〈b1, . . . , bs〉 are chain equivalent. Each elementary equivalence in this chain equates
(possibly two) pairs 〈ai〉 and 〈bj〉 due to the relations in R, and so we have 〈ain〉 = 〈bjn〉
for all 1 ≤ in, jn ≤ s. So u = 0.
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3 Central simple algebras
We now turn away from the general theory of quadratic forms to present the theory
of central simple algebras.

3.1 Definitions

The definition of an algebra over a ring abstracts familiar setups likes the complex
numbers C with scalar multiplication taken from R, or the polynomial ring Z[x, y]
viewed as a Z-module. Fix a unital ring A and a commutative unital ring R with a
homomorphism φ : R→ A such that φ(R) ⊂ Z(A). Then we say A is an (associative)
R-algebra. When R = k is a field, A has the structure of a vector space over k. A
homomorphism of R-algebras f : A → B is a ring homomorphism such that the
diagram

R

A B

φ1 φ2

f

(17)

commutes, where φ1, φ2 are the canonical homomorphisms mapping R into A,B re-
spectively.

In this dissertation, we focus our attention on k-algebras with k a field; then the
inclusion k → A is an injection and hence k-algebra homomorphisms A→ B are ring
homomorphisms that are also k-linear maps that preserve the image of k in A.

We say a k-algebra A is simple if it possesses no non-trivial 2-sided ideals. It
is central if Z(A) = k. Then we reach our key definition of this section: A central
simple algebra over k is a k-algebra A which is both central and simple.

3.2 Normed algebras

To gain a substantial taste of the behaviour of k-algebras before we develop the
general theory, in this subsection we will consider a family of R-algebras which will
serve as a foundational example from here on.

Consider the complex numbers C = R⊕R · i as an R−vector space, with product

(x1 + y1i) · (x2 + y2i) = (x1x2 − y1y2) + (x1y2 + y1x2)i.

This makes C an associative, commutative R-algebra with unit 1 = 1 + 0 · i.
The nontrivial element of the Galois group Gal(C/R) acts in the usual way as

complex conjugation, that is defined by z = a+ bi 7→ a− bi = z. Clearly z = z if and
only if z ∈ R.
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Since C/R is a finite Galois extension, we may define the norm in the usual
way, by setting NC/R : C → R by z 7→ z · z, or equivalently in R-coordinates by
x + iy 7→ x2 + y2. The norm is a quadratic form isomorphic to 〈1, 1〉, and it is also
multiplicative, since

NC/R(z1 · z2) = NC/R(z1) ·NC/R(z2).

Since 〈1, 1〉 is an anisotropic form, we may invert an arbitrary nonzero z ∈ C by the
rule

z−1 =
z

NC/R(z)
,

and hence C is a field. This point of view is generalised later.
As a further example of a normed algebra, consider Hamilton’s quaternions H =

C⊕ C · j as a C−algebra with the product

(u1 + v1j)(u2 + v2j) = (u1u2 − v1v2) + (u1v2 + v1u2)j.

Here this product is associative, but it is not commutative. In the quaternions we
have the conjugation u+ vj = u− vj, where u is the normal complex conjugate. We
can give Hamilton’s quaternions H real coordinates by specifying i ·j = k, and writing
an arbitrary z ∈ H as

z = a+ bi+ cj + dk

where a, b, c, d ∈ R. Then the multiplication in H just corresponds to expanding the
product in real coordinates, with the rules i · j = k, j · i = −k, j · k = i, k · j = −i,
k · i = j, i · k = −j. In these real coordinates, conjugation looks like

a+ bi+ cj + dk = a− bi− cj − dk.

As expected, quaternion conjugation is an involution, and it is an anti-isomorphism,
meaning a · b = b · a. And clearly w = w if and only if w ∈ R.

For an arbitrary quaternion w = u+ vj ∈ H, define its reduced norm N : H→ R
by N(w) = w ·w = NC/R(u)+NC/R(v). In real coordinates this looks like N(x+ yi+
zj + tk) = x2 + y2 + z2 + t2.

Lemma 8. The reduced norm N is multiplicative:

N(w1 · w2) = N(w1) ·N(w2).
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Proof. Let w1, w2 ∈ H. Then

N(w1 · w2) = (w1 · w2) · (w1 · w2)

= (w1 · w2) · (w2 · w1)

= w1 · (w2 · w2) · w1

= w1 ·N(w2) · w1

= (w1 · w1) ·N(w2)

= N(w1) ·N(w2).

Once again, the reduced norm N in R-coordinates is a quadratic form isomorphic
to 〈1, 1, 1, 1〉. And since 〈1, 1, 1, 1〉 is anisotropic, we get that H is a division algebra,
that is, for any non zero w ∈ H, there exists an inverse w−1 = w ·N(w)−1.

We can follow a similar construction with the octonions O = H⊕H·l. We consider
the octonions as an H−algebra with the product

(u1 + v1l) · (u2 + v2l) = (u1u2 − v2v1) + (v2u1 + v1u2)l. (18)

This product is neither commutative nor associative. This means that, strictly speak-
ing, H is not an R-algebra in the way we have defined them. But it is useful nonethe-
less to see how things like the reduced norm operate in this higher dimensional al-
gebra. As before, we have conjugation given by u+ vl = u − vl, and it is again an
anti-automorphism.

We will similarly define a reduced norm Nrd : O→ R given by Nrd(w) = w · w.
It is additive, that is for w = u + vl, we have Nrd(w) = Nrd(u) + Nrd(v), which
shows that Nrd as a quadratic form on the octonions is equal to the direct sum of
two copies of 〈1, 1, 1, 1〉. But to show it is multiplicative, we need a few results.

Lemma 9. Given w ∈ O,
w = w ⇐⇒ w ∈ R.

Proof. Write w = u + vl. Then siince u+ vl = u − vl, we have w = w if and only
if u = u and v = −v, or equivalently v = 0. Now from the case of quaternions it is
clear that this is equivalent to u ∈ R, v = 0, so that w ∈ R.

Lemma 10. O is central. That is,

Z(O) = R.
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Proof. It is clear that R ⊂ Z(O), so we will just show the other inclusion. Let
w = u + vl ∈ Z(O). Then for an arbitrary u′ ∈ H (which we will fix later) and
w′ = u′ + 0l we have w · w′ = w′ · w, which is equivalent to uu′ + vu′l = u′u + vu′l.
Hence uu′ = u′u and vu′ = vu′. Since uu′ = u′u is in the quaternion case, we get to
deduce that u ∈ R. Finally, we may fix u′ so that u′ − u′ 6= 0. From here we deduce
that v = 0 (recall that H is a division ring and hence has no zero divisors.) Hence
w = u+ vl ∈ R.

Proposition 10. The reduced norm Nrd on the octonions is multiplicative.

Proof. Write w1 = u1 + v1l, w2 = u2 + v2l. Then

w1 · w2 = (u1u2 − v2v1) + (v2u1 + v1u2)l, (19)

and since conjugation on quaternions is an anti-automorphism,

(w1 · w2) = (u2u1 − v1v2) + (−v2u1 − v1u2)l. (20)

Since Nrd(w) ∈ R for all w ∈ O, we need only compute the first component of
(w1 · w2) · (w1 · w2). So

Nrd(w1 · w2) = (w1 · w2) · (w1 · w2)

= (u1u2 − v2v1)(u2u1 − v1v2)− (−v2u1 − v1u2)(v2u1 + v1u2).

Further expanding, this is equal to

u1u2u2u1 − u1u2v1v2 − v2v1u2u1 + v2v1v1v2 + u1v2v2u1

+ u1v2v1u2 + u2v1v2u1 + u2v1v1u2.

Now applying the observation that a · a = a · a = Nrd(a) ∈ R commutes with
everything, we may write u1u2u2u1 as u1Nrd(u2)u1 = Nrd(u1)Nrd(u2), and other
monomials similarly, to obtain

(Nrd(u1)Nrd(u2) +Nrd(v1)Nrd(v2) +Nrd(u1)Nrd(v2) +Nrd(u2)Nrd(v1))

+ (u1v2v1u2 + u2v1v2u1 − u1u2v1v2 − v2v1u2u1).

Factoring the terms in the first brackets as (Nrd(u1)+Nrd(v1))(Nrd(u2)+Nrd(v2)) =
Nrd(w1)Nrd(w2), it remains to show that

u1v2v1u2 + u2v1v2u1 − u1u2v1v2 − v2v1u2u1 = 0. (21)

To do this, we will introduce a new tool. We define the reduced trace Trd : H → R
according to the formula Trd(w) = w + w. Since Trd(w) = Trd(w), we have that
Trd(w) ∈ R for any w ∈ H.
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Lemma 11. Given a, b ∈ H,

Trd(a · b) = Trd(b · a).

Proof. We have Trd(a · b) = a · b+ b · a, and Trd(b · a) = b · a+ a · b. It is sufficient
to check that Trd(a · b) · c = Trd(b · a) · c for some nonzero c ∈ H. If a or b is zero,
then both sides are zero, so there is nothing to prove. Otherwise we may take c = a
and compute

Trd(a · b) · a = a · b · a+ b · a · a
= a · b · a+ b ·Nrd(a)
= a · b · a+Nrd(a) · b
= a · b · a+ a · a · b = a · Trd(b · a) = Trd(b · a) · a,

where we used the fact that H is associative and that Nrd, Trd belong to the centre.
Hence the lemma is proved.

To finish off the proof of the proposition, we just need to observe that the left
hand side of Equation 21 is equal to Trd(a · b) − Trd(b · a), where a = u2v1v2 and
b = u1, and so by the lemma must be zero.

3.3 Tensor product of k-algebras

Now let A,B be k-algebras. We define the tensor product of A and B to be the
k-algebra A ⊗k B (this is the tensor product of vector spaces) with the unique mul-
tiplication whose action on elementary tensors is given by

(a1 ⊗ b1) · (a2 ⊗ b2) = (a1 · a2)⊗ (b1 · b2). (22)

An important result is:

Theorem 6 (Product of CSAs is CSA). Let A,B be central simple algebras over a
field k. Then the tensor product A⊗k B is a central simple algebra over k.

Proof. To show the product is central, it is enough to show the stronger result

Lemma 12 (Centres distribute over tensor product). Let A,B be algebras over a
field k. Then Z(A⊗k B) = Z(A)⊗k Z(B).
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Proof. We first show the inclusion Z(A) ⊗k Z(B) ⊂ Z(A ⊗k B). If
∑n

i=1 ai ⊗ bi ∈
Z(A)⊗k Z(B), then given any

∑k
j=1 a

′
j ⊗ b′j ∈ A⊗k B, we have(

n∑
i=1

ai ⊗ bi

)(
k∑
j=1

a′j ⊗ b′j

)
=

i=n,j=k∑
i,j=1

(aia
′
j)⊗ (bib

′
j)

=

i=n,j=k∑
i,j=1

(a′iaj)⊗ (b′ibj)

=

(
n∑
i=1

a′i ⊗ b′i

)(
k∑
j=1

aj ⊗ bj

)
.

where we exploited the centrality of the ai, bi. To demonstrate the inclusion Z(A⊗k
B) ⊂ Z(A)⊗k Z(B), let z =

∑n
i=1 ai ⊗ bi ∈ Z(A⊗k B). Consider the subspace B′ of

B spanned by the bi. Choose a basis for B′. By writing the bi in this basis, expanding
the tensors and absorbing coefficients, we justify the assumption that we may write
z =

∑n
i=1 ai ⊗ bi where the bi are linearly independent. Repeating this for the ai, we

can assume further that the ai are linearly independent too. Then given any z′ of the
form z′ = a⊗ 1 ∈ A⊗k B, we have

zz′ =
i=n∑
i=1

(aia)⊗ (bi)

= z′z =
i=n∑
i=1

(aai)⊗ (bi).

and, taking the difference and using linear independence of the bi, we get aia = aai for
all i. Hence ai ∈ Z(A). A similar argument on the bi lets us deduce that bi ∈ Z(B)
too.

Lemma 13 (Product of simple algebras is simple). Let A,B be simple algebras over
a field k, and assume A is central. Then A⊗k B is a simple algebra.

Proof. Choose a nontrivial two-sided ideal I in A ⊗k B. Choose a nonzero element
x =

∑n
i=1 ai ⊗ bi with n minimal amongst all possible choices, so that the bi are

linearly independent. By minimality of n, we see that a1 6= 0, so the ideal

J =

{∑
finite

aa1a
′ | a, a′ ∈ A

}
= A.
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Hence there exists a set of a, a′ ∈ A such that
∑
aa1a

′ = 1. By forming the products
(a ⊗ 1)x(a′ ⊗ 1) in I for each pair a, a′ and adding, we get an element of the form
y = 1⊗ b1 +

∑n
i=2 a

′
i ⊗ bi. So we justify the assumption that we can choose

x = 1⊗ b1 + a2 ⊗ b2 + · · ·+ an ⊗ bn ∈ I

with the same n as above. Let a ∈ A be arbitrary. Then

(a⊗ 1)x− x(a⊗ 1) =
n∑
i=2

(aai − aia)⊗ bi ∈ I.

By the minimality of n, we get that each aai − aia = 0, so that ai ∈ Z(A) = k for
each i. Hence

x =
n∑
i=1

1⊗ (aibi) = 1⊗

(
n∑
i=1

aibi

)
= 1⊗ b

for some b ∈ B (note we get n = 1 as a consequence). So, on the one hand,

(1⊗k B)(1⊗ b)(1⊗k B) = 1⊗k (BbB) = 1⊗k B ⊆ I

by the simplicity of B, and on the other hand

(A⊗k 1)(1⊗k B) = A⊗k B ⊆ I.

Hence I = A⊗k B, and so A⊗k B is simple.

Now combine the above facts to two central simple algebras A,B over k to get
the theorem.

By virtue of this theorem, the set of all isomorphism classes of central simple
algebras may be endowed with the structure of a commutative monoid, denoted M ,
with the product given by the tensor product ⊗k, and the identity given by k viewed
as an algebra over itself. Not every element of M is invertible (and hence M is not
a group), but we can form a quotient of M by so-called Brauer equivalence, where
the class of each element of M is invertible. The resulting group is called the Brauer
group of k.

3.4 Brauer equivalence

This subsection walks through the construction of Brauer equivalence onM . We start
with a theorem of Wedderburn that gives a general description of finite-dimensional
central simple algebras over a field. From now on, we assume all algebras are finite-
dimensional.
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Theorem 7 (Wedderburn). Let A be a finite-dimensional central simple algebra over
a field k. Then A ∼= Mn(D) for some integer n > 0 and division algebra D. Moreover,
the integer n here is unique, and D is unique up to isomorphism.

The division algebra D appearing in this theorem is called the underlying division
algebra of A. Its proof requires some easy lemmas.

Lemma 14 (Schur). Let M be a simple module over a k-algebra A, with k a field.
Then EndA(M) is a division algebra.

Proof. Let φ ∈ EndA(M). Then kerφ and Imφ are A-submodules of M . Then either
kerφ = 0, Imφ = M , in which case φ is invertible, or kerφ = M , Imφ = 0, in which
case φ = 0. So every nonzero φ is invertible and so EndA(M) is a division algebra.

Lemma 15 (Rieffel). Let L be a nonzero left ideal in the finite-dimensional simple
k-algebra A, with k a field. Put D = EndA(L). Then the map

λL : A→ EndD(L),

a 7→ φa

with φa(x) = ax, is an isomorphism.

Proof. Injectivity: Any non-trivial ring homomorphism from a simple k-algebra is
injective.
Surjectivity: Let φ ∈ EndD(L) be arbitrary. By simplicity of A, the two-sided ideal
LA is equal to A. Hence we may write 1 =

∑
i liai for finitely many ai ∈ A, li ∈ L.

Now
φ = φ · λL(1) =

∑
i

φλL(li)λL(ai).

It suffices to show that φλL(li) ∈ λL(L) for each i, because then φ ∈ λL(A) and
hence the map is surjective. We will show that λL(L) is a left ideal of EndD(L). Let
ψ ∈ EndD(L) and l ∈ L. We have attached to l the map λL(l) : x 7→ lx. Using the fact
that ψ is a D-endomorphism, we have ψ · λL(l) : x 7→ ψ(lx) = ψ(l)x = λL(ψ(l))(x).
So we have ψ · λL(l) = λL(ψ(l)), and hence λL(L) absorbs multiplication from the
left.

Proof of Wedderburn’s theorem. Existence. Choose a minimal left ideal L of A (since
A is finite-dimensional, any descending chain of left ideals must stabilise. so we can
always make such a choice). We may then regard L as a simple A-module. By Schur’s
lemma, D = EndA(L) is a division algebra. Hence every D-module is free, that is, we
can choose a basis. By Rieffel’s lemma, we have A ∼= EndD(L). Now choosing a basis
for the D-module L, we get an isomorphism EndD(L) ∼= Mn(D), where n = dimD(L)
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is finite due to the finite dimensionality of A over k.
Uniqueness. First, note that we have the direct sum decomposition

Mn(D) =
⊕
s

Is

where the Is, 1 ≤ s ≤ n are ideals of Mn(D) defined by mij ∈ Is ⇐⇒ mij = 0
for j 6= s. Further note that each of the Is are simple left Mn(D)-modules, i.e. are
minimal ideals with respect to inclusion. Since any simple left Mn(D)-module can
be realised as a quotient of Mn(D) by a maximal ideal, and the Is are mutually
isomorphic to Dn, we get that every simple left Mn(D)-module is isomorphic to Dn.

Now, to show uniqueness. Suppose we have A ∼= Mn(D) ∼= Mm(D
′) for division

algebras D,D′ and integers n,m. The ideal L in the proof of existence is a simple
left Mn(D)-module. Hence we have Dn ∼= L ∼= D′m. Choosing a basis for Dn and
D′m respectively, we obtain isomorphisms A ∼= EndA(D

n) ∼= EndA(D
′m). We have

A ∼= EndD(D
n) and A ∼= EndD′(D

′m). Now apply Rieffel’s lemma to get a chain of
isomorphisms D ∼= EndA(D

n) ∼= EndA(D
′m) ∼= D′. So D ∼= D′ and hence n = m.

As a corollary, we obtain

Proposition 11. Let A be a central simple algebra over k. Then dimk A = n2 for
some n ∈ N.

Proof. By Wedderburn’s theorem, we see that A ∼= Mm(D) for some m ∈ N and
division algebra D, and clearly dimk A = m2 · dimkD, so it is enough to show that
any division algebra over k has square dimension. First, there are no nontrivial finite
dimensional division algebras over the algebraic closure k of k, since if K is such an
algebra and x ∈ K, then since k ⊂ Z(K), we have that k[x] is a commutative, finite
dimensional subring of D over k, and is hence a finite (so algebraic) field extension
of k. But then algebraic closure implies k[x] = k and thus x ∈ k.

Extending scalars to k, we see that the k-algebra D = D⊗k k is simple by Lemma
13, and it is central by a similar argument to before. Now Wedderburn’s theorem
gives

D =Ml(D
′)

for some finite dimensional division algebra D′ over k, whence D′ = k by our previous
discussion and so dimk(D) = l2. Now we only need to observe that dimk(D) =
dimk(D), and hence n = ml proves the proposition.

We now turn to the crucial definition: We say that central simple algebras A,B
over k are Brauer equivalent if they have the same underlying division algebras. This
forms an equivalence relation compatible with the tensor product operation, so that
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the quotient of the monoidM from earlier by this equivalence relation is well-defined.
The quotient is a group Br(k) with identity [k], and the inverse of the algebra A is
the algebra Aop, the opposite algebra of A, defined to have the same elements and
addition as A, but multiplication

a · b = ba

where the multiplication on the right is performed in A. It is easy to see that Aop is
a central simple algebra over k if and only if A is.

Lemma 16. Let A be a CSA over k. Then

A⊗k Aop =Mn(k).

where n = dimk A.

Proof. Define the k-linear map

T : A⊗k Aop → Endk(A),∑
ai ⊗ a′i 7→

(
x 7→

∑
aixa

′
i

)
.

This map is obviously nonzero, and since A ⊗k Aop is simple, we see it is injective.
Since both sides have the same dimension, the map is necessarily surjective. Now
choose a k-basis for A to get the isomorphism.

So A⊗k Aop ∼ k in the Brauer group, and so indeed Aop is inverse to A.
For each finite field extension L/k, we have a well-defined norm map NL/k on the

Brauer group Br(L), defined in terms of Galois cohomology (a detailed exposition is
found in [4]). In this dissertation, we will treat the norm map as a black box. One
property is that given the class of a central simple algebra Q in Br(k), we have

Q = NL/k(QL)

where QL := Q⊗k L is considered as an L-algebra. The other properties we need will
be introduced later.

3.5 Generalised quaternion algebras

One important class of central simple algebras are the (generalised) quaternion alge-
bras. Here we present a theory of these algebras that will be invoked throughout the
sequel. Let k be a field with char k 6= 2. First, we introduce the notation k〈i, j〉 for
the free associative k-algebra on the indeterminates i, j. This is the "freest" algebra
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generated by i and j over k, meaning no relations hold on i, j other than those forced
by the definition of k-algebra. Fix a, b ∈ k×, and define

(a, b)k :=
k〈i, j〉

(i2 − a, j2 − b, ij + ij)
. (23)

We call (a, b)k the quaternion algebra attached to a, b. It is clear that (a, b)k is a four-
dimensional k-algebra, where 1, i, j, ij form a basis. Given q = x + yi + zj + wij ∈
(a, b)k, we define the conjugate q := x − yi − zj − wij. We define the reduced norm
of q as the product

N(q) := qq = x2 − ay2 − bz2 + abw2.

This is a nondegenerate quadratic form on (a, b)k equal to the Pfister form 〈〈a, b〉〉.
Since N(q1q2) = q1q2(q1q2) = q1q2q2q1 = q1N(q2)q1 = q1q1N(q2) = N(q1)N(q2), we
see that N is a multiplicative function. Furthermore we see that N(q) 6= 0 if and only
if q is invertible (the inverse is q/N(q)). Similarly to the reduced norm, we define the
k-linear reduced trace Tr(q) := q+q. The kernel of this map is a 3-dimensional vector
subspace V = ki ⊕ kj ⊕ kij of (a, b)k. Given any v ∈ V , we have v2 = −N(v). We
define the associated conic C to (a, b)k as the smooth projective conic curve whose
defining polynomial is is the restriction N |V of the reduced norm to V . We have

C : aX2 + bY 2 = abZ2.

Example 3. 1. By inspecting the definition, we see that (a, b)k ∼= (b, a)k.

2. Fixing a = b = −1, we have (a, b)R ∼= H, the classical Hamilton quaternions over
R. The associated conic C is the projective curve with equation X2+Y 2+Z2 =
0. Note that C has no R-rational points.

3. Fixing a = −1, b = 1, we obtain the classical split-quaternions. We have an
isomorphism (a, b)k ∼= M2(k), the k-algebra of 2× 2 matrices with entries in k,
by

i 7→ I :=

[
0 −1
1 0

]
, j 7→ J :=

[
1 0
0 −1

]
.

The matrices id, I, J, IJ form a k-basis for M2(k), and furthermore one has the
relations I2 = −id, J2 = id, IJ = −JI.

4. Generalising the above, we have an isomorphism (1, b)k ∼= M2(k) via the map

i 7→ I :=

[
1 0
0 −1

]
, j 7→ J :=

[
0 b
1 0

]
.

One can check that id, I, J, IJ forms a basis forM2(k) and that all the necessary
relations in the image hold.
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Figure 1: The restriction to an affine patch of the associated conics for the quaternion
algebras (1, 1)R and (2,−3)R. We get a circle and a hyperbola, respectively.

5. We can visualise associated conics with R-rational points (see Figure 1).

Motivated by this last example, we call a quaternion algebra over k split if it is
isomorphic to M2(k) as a k-algebra.

Lemma 17. The following conditions are equivalent:

1. (a, b)k is split.

2. (a, b)k is not a division algebra.

3. N is isotropic.

4. b is a norm in the quadratic extension k(
√
a)/k.

5. C has a k-rational point.

Proof. The implication 1 =⇒ 2 follows since M2(k) is never a division algebra, and
2 ⇐⇒ 3 follows since N(q) 6= 0 if and only if q is invertible. To show 3 =⇒ 4,
suppose q = x+yi+zj+wij satisfies N(q) = 0. Then we have (z2−aw2)b = x2−ay2.
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Now suppose that a is not a square in k, for otherwise k(
√
a) = k and thus b is a norm.

Then we see that N(z +
√
aw)b = N(x+

√
ay), and since N(z +

√
aw) 6= 0, we have

b = N((x+
√
ay)/(z+

√
aw)). We show 4 =⇒ 1 to get statements 1-4 equivalent. To

do this, we exhibit an isomorphism (a, b)k ∼= (1, 4a2), which with Example 3 the result
follows. Suppose 4, then b−1 is also a norm and hence we may write b−1 = s2−at2 for
some s, t ∈ k. Put c = sj + tij. Then c2 = bs2 − abt2 = b(s2 − at2) = bb−1 = 1. Put
d = (1+a)i+(1−a)ci. Since ci = −ic, we have d2 = (1+a)2a− (1−a)2a = 4a2, and
moreover cd = (1+a)ci+(1−a)i = −dc. So we have an isomorphism (a, b)k ∼= (1, 4a2)k
by i 7→ c, j 7→ d. Finally, we show 4 ⇐⇒ 5. To show 4 =⇒ 5, let b = s2 − at2
for some s, t ∈ k. We see that P = (x0, y0, z0) = (a−1, b−1t, a−1b−1s) is a k-rational
point, since multiplying the equation of C by ab 6= 0 and substituting in P , we have
the calculation

ab(a(a−1)2 + b(b−1t)2 − ab(a−1b−1s)2) = b+ at2 − s2 = 0

and hence ax20 + by20 = abz20 . Now to show 5 =⇒ 4, suppose (x0, y0, z0) is a k-
rational point of C. Then at least one of x0, y0 are nonzero. If x0 6= 0, then the point
(u0, v0, w0) := (a−1y0, b

−1x0, z0) is a k-rational point of the curve

C ′ : aX2 + bY 2 = Z2

and since v0 6= 0, we have b = (z0/v0)
2 − a(u0/v0)2, so b is a norm in the quadratic

extension k(
√
a)/k. If x0 = 0 then y0 6= 0 and similar reasoning lets us deduce that

a is a norm in the quadratic extension k(
√
b)/k, which is equivalent.

As a remark, we note that if C has a k-rational point, then it is isomorphic to the
projective line P1(k). Conversely, it is clear that if C ∼= P1(k), then C has a k-rational
point. So we may add this on as a further equivalent condition to the above. In fact,
two generalised quaternion algebras (a, b)k, (c, d)k are isomorphic if and only if their
associated conics are isomorphic.

Example 4. Fix a ∈ k× \ {1}, then the quaternion algebra (a, 1 − a)k splits since
the associated conic has equation aX2 + (1− a)Y 2 = a(1− a)Z2 and so it is easy to
check that (a−1, (1− a)−1, a−1(1− a)−1) is a k-rational point.

Lemma 18. The quaternion algebra (a, b)k is a central simple algebra over k.

Proof. Centrality: Clearly k ⊂ Z ((a, b)k). Let q = x + yi + zj + wij ∈ Z ((a, b)k).
Then qi− iq = −2zij−2awj = 0, so z = 0, w = 0. And qj− jq = 2yij = 0, so y = 0.
We hence see that q ∈ k.

Simplicity: If (a, b)k is a division algebra, this is trivial. By virtue of Lemma 17,
we may therefore assume that (a, b)k is split. It is sufficient to show that M2(k) is
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simple. Let I ⊂ M2(k) be a nonzero two-sided ideal, and let 0 6= m ∈ I. Then m
has a nonzero entry. Denote by Eij the elementary matrix with 1 in the i, jth entry
and 0 everywhere else. By applying successive row/column operations to m, we may
turn m into Eij for any i, j. This corresponds to multiplying m on the left/right by
matrices, so each Eij ∈ I. Since the Eij for 1 ≤ i, j ≤ 2 form a basis for M2(k), we
see I =M2(k).

3.6 Biquaternion algebras

It follows from Lemma 18 that the tensor product (a, b)k⊗k (c, d)k is a central simple
algebra over k. We refer to such a product as a biquaternion algebra over k.

Lemma 19. Let (a, b)k, (a, b
′)k be quaternion algebras. Then (a, b)k ⊗k (a, b′)k ∼=

(a, bb′)k ⊗k M2(k).

Proof. Choose quaternion bases {1, i, j, ij} and {1, i′, j′, i′j′} for (a, b)k and (a, b′)k
respectively.We define two k-subspaces Q1, Q2 of (a, b)k ⊗k (a, b′)k with bases {1 ⊗
1, i ⊗ 1, j ⊗ j′, ij ⊗ j′} and {1 ⊗ 1, 1 ⊗ j′, i ⊗ i′j′, (−b′i) ⊗ i′} respectively. Since the
k-vector spaces generated by these bases are closed under products, it is clear that
Q1, Q2 are k-subalgebras of (a, b)k ⊗k (a, b′)k. We have the following:

1. Q1
∼= (a, bb′)k since we have (i⊗ 1)2 = a⊗ 1 = a(1⊗ 1) and (j ⊗ j′)2 = b⊗ b′ =

bb′(1⊗ 1).

2. Q2
∼= (b′,−a2b′)k since we have (1 ⊗ j′)2 = 1 ⊗ b′ = b′(1 ⊗ 1) and (i ⊗ i′j′)2 =

a⊗ (−ab′) = −a2b′(1⊗ 1).

Furthermore, it is easy to see that (b′,−a2b′)k ∼= (b′,−b′)k via the map i 7→ i, j 7→ aj.
And (b′,−b′)k is split, since the associated conic has a k-rational point (1, 1, 0).So
we see Q2

∼= M2(k). Finally, we have the commutator [Q1, Q2] = 0, which may be
verified by computing commutators of basis elements of Q1 with basis elements of Q2.

Define

φ : Q1 ×Q2 → (a, b)k ⊗k (a, b′)k
(x, y) 7→ xy.

This induces, by the universal property of the tensor product and the fact that
[Q1, Q2] = 0, a k-algebra homomorphism Q1 ⊗k Q2 → (a, b)k ⊗k (a, b′)k. One can
check that the induced map is surjective (every element of the induced basis on
(a, b)k ⊗k (a, b′)k can be attained), and hence the map is an isomorphism by equality
of dimensions.

As a corollary, we obtain
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Lemma 20. Given a quaternion algebra (a, b)k, we have (a, b)k ⊗k (a, b)k ∼= M4(k).

Proof. Set b = b′ in the previous lemma, and observe that (a, b2) ∼= (a, 1) by i 7→
i, j 7→ bj. By item 4 of Example 3, we have (a, b2) ∼= M2(k). Observing that
M2(k) ∼= M2(k)

op by taking a matrix to its transpose, Lemma 16 lets us deduce
M2(k)⊗k M2(k) ∼= M4(k).

We note that the biquaternion algebra A = (a, b)k ⊗k (c, d)k has a conjugation
induced by the conjugations on (a, b)k and (c, d)k. Specifically, for q ∈ (a, b)k, p ∈
(c, d)k, we let

σ(q ⊗ p) = q ⊗ p

and extend to the whole tensor product by linearity. This induced conjugation is
not canonical since it depends on the choice of generalised quaternion algebras in the
tensor product above. Now let V ⊂ A be the kernel of the map a 7→ a + σ(a). Let
W ⊂ A be the kernel of the map a 7→ a − σ(a). Then the biquaternion algebra A
decomposes into k-subspaces as

A = V ⊕W

since V ∩W = 0, and taking the basis of A induced by products of basis elements of
(a, b)k and (c, d)k respectively and evaluating the conjugation σ on this basis, we see
that V is a 6-dimensional subspace of A and W is a 10-dimensional subspace of A.
So the dimensions of V and W correctly add to the dimension of A.

Now given a biquaternion algebra A = (a, b)k ⊗k (c, d)k as before, define the
quadratic form

A{a,b}+{c,d} = N(a,b) −N(c,d)

where N(a,b), N(c,d) are the subforms given by the restriction to V(a,b), V(c,d) of the
reduced norms 〈〈a, b〉〉, 〈〈c, d〉〉 on (a, b)k and (c, d)k respectively, and the underlying
vector space for A{a,b}+{c,d} is the space V defined above. We call such a form an
Albert form. Note that it depends on the choice of quaternion algebras as before,
but any two Albert forms for A are k-scalar multiples of each other. In diagonal
presentation, we have

A{a,b}+{c,d} = 〈a, b,−ab,−c− d, cd〉

(contrast this with the definition given in subsection 2.8).

3.7 Geometry of quaternion algebras

In this subsection, we explore the algebraic geometry of the associated conic to a
quaternion algebra. We fix a field k of characteristic not 2 and a quaternion algebra
Q = (a, b)k, so that the associated conic C has equation aX2 + bY 2 = abZ2. Now
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consider the ring R = k[X, Y, Z]/(aX2 + bY 2− abZ2). It is a graded ring, so we have
a topological space Proj(R) whose elements correspond to homogeneous prime ideals
of R not containing the irrelevant ideal (X, Y, Z). The space Proj(R) is glued out
of three affine patches AX ,AY ,AZ which correspond to the localisations at X, Y, Z
respectively. To present the following definitions, let us restrict to the affine patch
AZ . By a closed point of C we mean a scheme-theoretic point corresponding to a
maximal ideal p of RZ,0 := k[X, Y ]/(aX2 + bY 2 − ab). We consider the local ring
Op(C) of C at p, which is by definition the localisation of RZ,0 at p. The degree of
a closed point p is the dimension of the residue field Op(C)/pOp(C) over k. This
is finite by a geometric formulation of Hilbert’s Nullstellensatz. Clearly a point p is
k-rational if and only if it has degree 1. If the scheme-theoretic point does not belong
to the affine patch AZ , then we can simply restrict to a different affine patch in which
it does, and then work in that corresponding localisation for the definitions above.

Recall that the kernel of the reduced trace Tr is a 3-dimensional vector subspace
V of Q. For every q ∈ Q we define the linear functional lq ∈ V ∗ by lq(x) := Tr(qx).
Attached to lq is the line in the projective plane P(V ) defined by the equation lq(x) =
0.

Lemma 21. Let p, q ∈ Q and c1, c2 ∈ k. Then

1. lp = lq if and only if p− q ∈ k,

2. lc1p+c2q = c1lp + c2lq,

3. lp = −lp,

4. lp−1 = −(N(p))−1lp, provided p is invertible.

Proof. 1. If lp = lq, then for any x ∈ V we have px + (px) = qx + (qx), hence
px + xp − qx − xq = 0 and so along with the fact that since x ∈ V we have
x = −x, it follows

(p− q)x = x(p− q). (24)

Write p− q = α+βi+γj+ δij. Then set x = i ∈ V . From Equation 24, we get

αi+ aβ − γij − aδj = αi− aβ − γij − aδj

which implies 2aβ = 0, so β = 0. Writing down similar equations for x = j and
x = ij gives γ = δ = 0 too, and hence p− q ∈ k. The converse is clear.

2. This follows from k-linearity of Tr.

3. We have lp(x) + lp(x) = px+ (px) + px+ (px) = px+ xp+ px+ xp = px− xp+
px− xp = (p+ p)x− x(p+ p) = 0 since p+ p ∈ k commutes with all x ∈ V .
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4. Assume p is invertible. Then p−1 = p ·N(p)−1. So for x ∈ V we have lp−1(x) =

p−1x + (p−1x) = p · N(p)−1x + x · (p ·N(p)−1) = N(p)−1 (px− xp) = N(p)−1 ·
lp(x) = −(N(p))−1lp(x) by 3.

Lemma 22. There is a bijective correspondence between quadratic subalgebras of Q
and lines in P(V ).

Proof. Given a quadratic subalgebra K of Q, let p ∈ K \ k, so that we may write
K = k[p] := k ⊕ kp. Then given some other choice q ∈ K \ k we have p = λq + µ for
some λ ∈ k×, µ ∈ k, hence lp = lλq+µ = λlq + lµ = λlq by Lemma 21 and therefore
lp, lq determine the same line in P(V ). So there is a well-defined map taking quadratic
subalgebras to lines in P(V ). Conversely, since Tr is a nondegenerate bilinear form
on Q, every linear functional on V can be expressed as lq for some q ∈ Q. Hence
every line in P(V ) is given by lq(x) = 0 for some q ∈ Q. We see that q /∈ k since
otherwise lq is trivial. So q generates a quadratic subalgebra of Q. It is easy to see
that these maps are mutually inverse.

3.8 Divisors on the associated conic

Now we briefly introduce divisors. A more detailed treatment of them is given in
Fulton’s book [3]. By a divisor on C we mean a Z-valued function on the closed
points of C with finite support. Hence a divisor is equivalent to a formal finite sum
D := n1p1 + n2p2 + · · · + nkpk for some k ∈ N, where the pi are closed points on C
and the ni are integers. We define the degree of D as the sum

∑k
i=1 ni · deg(pi). We

say D is effective if each of the ni ≥ 0., and in this case we write D ≥ 0. Given
a rational function f ∈ k(C), we define the divisor of poles and zeros for f as the
divisor div(f) :=

∑
p∈C ordp(f) · p, where the sum is indexed over all closed points

p of C, and ordp(f) is equal to the order of f in the discrete valuation ring Op(C).
Since C is projective, it is easy to see that deg div(f) = 0.

Given a divisor D on C, we define the Riemann-Roch space L(D) attached to D
as the vector space

L(D) := {f ∈ k(C) | D + div(f) ≥ 0} ∪ {0}.

Hence, writing D =
∑
npp, L(D) consists of all those rational functions whose zeroes

at each p with negative coefficient have order at least −np, and whose poles at each
p with positive coefficient have order at most np. Attached to C is a divisor ω, called
a canonical divisor of C.
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Example 5. If Q is split, then C is isomorphic to P1(k) as a projective curve, and
hence we may choose ω = −2(∞) where (∞) is the point at infinity of P1(k). Then
the Riemann-Roch theorem gives the equality of dimensions

dimk L(D)− dimk L(ω −D) = deg(D)− g + 1

with g = 0. We have two cases: If deg(D) ≥ 0, then for any f ∈ k(C) we have
deg(div(f)+ω−D) < 0, and so div(f)+ω−D is not effective. Hence dimk L(ω−D) =
0 and so we have dimk L(D) = deg(D) + 1. If deg(D) < 0, then div(f) + D is not
effective and so clearly dimk L(D) = 0. So in summary we have

dimk L(D) =

{
deg(D) + 1, deg(D) ≥ 0,

0, deg(D) < 0.

In particular, if deg(D) = 0, then dimk L(D) = 1, and so we may choose nonzero
f ∈ L(D) such that div(f) + D ≥ 0. Since the left hand side has degree zero, it
follows that div(f) +D = 0. But then D = −div(f) = div(1/f). So every divisor of
degree zero on C is principal.

Since the canonical divisor is stable under field extensions (since the tangent bun-
dle of C is), the degree of the canonical divisor ω on C is the same as that on P1. So
the degree of ω on C is -2, and the same argument as above still works to show that
in the nonsplit case too, every divisor on C of degree zero is principal.

Lemma 23. There is a bijective correspondence between lines in P(V ) and degree
two effective divisors on C.

Proof. Taking the intersection of the line defined by lq with the associated conic C,
we get a degree two effective divisor on C. Conversely, given a degree two effective
divisor D on C, we have two cases: Either D = p1 + p2 with p1, p2 k-rational points,
or D = p, with p a degree two closed point of C. In the first case it is clear that we
get a line in P(V ) by assigning the unique line that passes through p1 and p2 (this
is a tangent to C in the case p1 = p2). In the second case, we get a line by passing
to the splitting field K of p, where p splits into two k-rational points p1, p2 which
are distinct since the characteristic of k is not two. Then the Gal(K/k)-action which
swaps p1 and p2 preserves the line between them, and so this line must exist over the
base field k.

3.9 Nonsplit conics

We now specialise to the case when Q is a division algebra, with which the geometry
of the associated conic becomes simpler. Hence, we will assume Q is a division algebra
until we state otherwise.
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Lemma 24. A k-subalgebra Kof Q of dimension 2 is a quadratic (maximal) subfield
of Q.

Proof. Since K contains a copy of k we can write K = k ⊕ kx for some x ∈ K \ k.
Then given two elements a+ bx, c+ dx ∈ K, we have

(a+ bx)(c+ dx) = ac+ bdx2 + (ad+ bc)x,

(c+ dx)(a+ bx) = ca+ dbx2 + (da+ cb)x,

which are equal since a, b, c, d ∈ k. So K is commutative. Now to show it is a
subfield, it is sufficient to show that the (left or right) inverse x−1 ∈ K. Indeed, we
have x−1 = x/N(x), and since x ∈ K, it follows x−1 ∈ K.

Since Q is nonsplit, C does not have any k-rational points. It follows that an
effective divisor D on C of degree two must be prime, i.e. D = p for a closed point p
of degree two. Hence Lemmas 22 and 23 specialise to

Lemma 25. There is a bijective correspondence between quadratic subfields of Q and
closed points of degree 2 in C.

We would then expect there to be a relationship between the quadratic subfield
K of Q and the residue field of the corresponding closed point p in C. Indeed, we
have the following result:

Theorem 8 (Correspondence between subfields and residue fields). Let K be a
quadratic subfield of Q, let p be the corresponding closed point of degree 2 in C,
and let κ(p) be the residue field at p. Then we have a canonical isomorphism

φ : K → κ(p).

The isomorphism operates as follows: Choose a quadratic subfieldK ofQ. First,choose
q ∈ Q\K, so that we can write Q = K⊕ qK. Then given any c ∈ Q, write c = a+ bq
for unique a, b ∈ K. We identify the linear forms lc, lb with their corresponding linear
homogeneous polynomials; then

φ : b 7→ lc
lb
(p) ∈ κ(p).

The map φ as defined may be verified to a well-defined ring homomorphism from K
to κ(p), which is surjective and injective. A proof of this can be found in Merkurjev’s
paper [6].
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4 Milnor K-theory of fields

4.1 Construction

Let k be a field. Then we can consider the multiplicative group k× as a Z−module.
Let TZ(k×) denote the tensor algebra of k× over Z - this is the Z≥0-graded algebra

TZ(k
×) = ⊕∞n=0k

∗ ⊗Z · · · ⊗Z k
× = Z⊕ k× ⊕ (k× ⊗Z k

×)⊕ . . .

with the product

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = (v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn).

The Milnor K-theory of k is the quotient algebra

KM
∗ (k) = TZ(k

×)/(a⊗ (1− a), a ∈ k \ {0, 1}).

We have the direct sum decomposition

KM
∗ (k) =

∞⊕
i=0

KM
i (k)

where KM
0 (k) = Z, KM

1 (k) = k×. By the very definition of KM
∗ (k), it is generated by

KM
1 (k). We identify each a ∈ k× with {a} ∈ KM

1 (k), and the product {a1}·· · ··{an} ∈
KM
n (k) is denoted {a1, . . . , an} and is called a pure symbol. Below are some basic

algebraic properties of KM :

Lemma 26. For any a ∈ k×, we have {a, a} = {a,−1}.

Proof. If a = 1, then on the one hand {a, a} = 1⊗Z 1 = 0 (we are regarding 1 as the
neutral element of k×), and on the other hand {a,−1} = 1⊗Z−1 = 0. If a ∈ k×\{1},
then −{a} = {1/a},and hence

0 = {1/a, 1− 1/a} = −{a, 1− 1/a} = −{a, (1− a)/(−a)}
= −{a, 1− a}+ {a,−a} = {a,−a}

So 0 = {a,−a} = {a, a/(−1)} = {a, a}−{a,−1}, which means {a, a} = {a,−1}.

Lemma 27. For any a, b ∈ k×, we have {a, b} = −{b, a}.

Proof. We have for any a, b ∈ k×, using bilinearity, {ab, ab} = {a, a}+{b, b}+({a, b}+
{b, a}). It remains to show that {a, a} + {b, b} = {ab, ab}. Using Lemma 26, we get
{a, a}+ {b, b} = {a,−1}+ {b,−1} = {ab,−1} = {ab, ab}.
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From this proposition with the fact that KM
∗ (k) is generated by the first-degree

component, it follows that for any x ∈ KM
n (k), y ∈ KM

m (k), we have xy = (−1)nmyx.
So KM

∗ (k) is skew-commutative. Of course, the relations {a, 1−a} = 0 and {a,−a} =
0 generalise easily: We have for a1, . . . , an ∈ k× {a1, . . . , an} = 0 if a1 + · · ·+ an = 1
or a1 + · · ·+ an = 0.

Example 6. 1. We compute KM
∗ (Fq) where Fq is a finite field of q elements.

Clearly KM
1 (Fq) = Z/(q− 1). Choose a generator a for F×q . Then since we have

a surjective homomorphism F×q ⊗ F×q → KM
2 (Fq), it follows KM

2 (Fq) is cyclic
with generator {a, a}. Since {a, a} = {a,−1}, this generator has order no more
than 2, which means KM

2 (Fq)/2 = KM
2 (Fq). The equation x2 + y2 = a has a

solution in Fq by a counting argument: The number of elements of the form x2

is 1+(q−1)/2 and the number of elements of the form a−y2 is also 1+(q−1)/2
for x, y ∈ Fq. Since the sum is greater than q, there must exist an element that
can be presented both as x2 and a− y2. Since a generates a cyclic group, it is
not a square, and so we must have x, y 6= 0. Hence we have (y/x)2−a/x2 = −1.
Now working in KM

2 (Fq)/2, we see that {1/(x2),−1} = −{x2,−1} = 0 and
{a/(x2), (y/x)2} = 0, so that we have the following:

{a,−1} = {a,−1}+ {1/(x2),−1}+ {a/(x2), (y/x)2}
= {a/(x2),−1}+ {a/(x2), (y/x)2}
= {a/(x2),−(y/x)2} = 0.

Hence KM
2 (Fq) is zero, and so KM

n (Fq) is zero for n ≥ 2.

2. Next, we computeKM
∗ (R)/2KM

∗ (R). We haveKM
∗ (R)/2KM

∗ (R) = (TZ(R×)/2TZ(R×))/(a⊗
(1−a) a ∈ R\{0, 1}). But TZ(R×)/2TZ(R×) = TZ/2Z(R×/(R×)2), and R×/(R×)2 =
Z/2Z. So TZ/2Z(R×/(R×)2) = Z/2Z[t], where t = −1. Any element of the form
a⊗ (1−a) is zero in (R×/(R×)2)⊗2, since either a or 1−a is positive. It follows
that

KM
∗ (R)/2 = TZ/2(R×/(R×)2) = Z/2[t].

4.2 Functoriality

We now fix fields F,L. We may regard KM
∗ as a (covariant) functor from the category

of fields to the category of graded abelian groups. This is because a field extension
L/F induces a group homomorphism KM

∗ (F )→ KM
∗ (L) defined by sending a symbol

{a1, . . . , an} to itself. It is easy to see that a trivial field extension F/F induces the
identity map on the corresponding Milnor K-theories, and that KM

∗ respects towers
K ⊃ L ⊃ F of field extensions. Given u ∈ KM

∗ (F ), we write uL for the image of u in
KM
∗ (L).
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4.3 Residue map

Give F a discrete valuation v : F× → Z, that is to say a group homomorphism
satisfying v(x+y) ≥ min{v(x), v(y)}. Let F denote the residue field. We may regard
v as a group homomorphism

v : KM
1 (F )→ KM

0 (F ),

which extends uniquely to a residue homomorphism

∂ : KM
n (F )→ KM

n−1(F ),

defined as follows. Choose a prime element t (that is t ∈ F× such that v(t) = 1)
and let u denote the image of u in F . Given a symbol {a1, a2, . . . , an}, write each
ai = ui · tki for some unit ui and integer ki. Then, using linearity of the symbols and
the identity {a, a} = {a,−1}, we get that we may write {a1, a2, . . . , an} as a sum of
symbols of the form {t, u2, . . . , un} and {u1, u2, . . . , un}. Now define

∂ : {t, u2, . . . , un} 7→ {u2, . . . , un},
{u1, . . . , un} 7→ 0.

This specifies ∂ completely, so if such a map exists, it is unique. A construction of
the residue map due to Serre is found in [7].

When we set F = k(C), the function field of the associated conic to a quaternion
algebra, then given a closed point p ∈ C there is a residue homomorphism

∂p : K
M
2 (F )→ KM

1 (F ) = KM
1 (κ(p)) = κ(p)×

induced by the discrete valuation of the local ring Op(C).

4.4 Norm map

Let L/F be a field extension. Suppose that L/F is finite. Then there is the classical
norm homomorphism

NL/F : L× → F×

given for each a ∈ L× by the determinant of the F -linear transformation x 7→ ax.
When L/F is Galois, we have

NL/F (a) =
∏

σ∈Gal(L/F )

σ(a).

Similarly to before, the norm map may be viewed as a group homomorphism

NL/F : KM
1 (L)→ KM

1 (F ).
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The induced homomorphism KM
∗ (F ) → KM

∗ (L) endows KM
∗ (L) with the structure

of a KM
∗ (F )-module. It is true that NL/F extends uniquely to a KM

∗ (F )-linear norm
residue map defined in any degree

NL/F : KM
∗ (L)→ KM

∗ (F )

by the residue map defined above, and Milnor’s computation of Milnor’s K-theory for
a function field in one variable., also given in [7]. A theorem of Kato characterises
the norm homomorphisms associated with L/F on Milnor K-theory. The properties
we need are:

1. The induced homomorphism KM
∗ F → KM

∗ L composes with the norm map in
the following way: For u ∈ KM

∗ F we have

NL/F (uL) = [L : F ] · u.

2. If L/F is Galois with Galois group G, then

(NL/F (u))L =
∑
σ∈G

σu

where σu is the natural action (see the discussion following Lemma 38 for the
description for KM

2 (k), the only component we consider the norm map on).

4.5 Milnor K-theory mod 2 and the graded Witt ring

The induced grading on the quotient KM
∗ (k)/2KM

∗ (k) =
⊕

n≥0K
M
n (k)/2KM

n (k) lets
us define the nth Milnor K-group mod 2 kMn (k) := KM

n (k)/2KM
n (k). We have

kM0 (k) = Z/2Z and since for any a ∈ k× we have 2{a} = {a2}, it follows that kM1 (k) =
k×/ (k×)

2. The second degree component kM2 (k) of KM
∗ (k)/2KM

∗ (k) admits the fol-
lowing description by generators and relations: It is generated as an F2-vector space
by symbols {a, b} with a, b ∈ k×, subject to the relations {aa′, b} = {a, b} + {a′, b},
{a, bb′} = {a, b}+ {a, b′} and {a, b} = 0 if a+ b = 1.

Revisiting the graded Witt ring and Pfister forms introduced in Subsection 2.8,
we will now introduce a map from Milnor K-theory mod 2 to the graded Witt ring.

Proposition 12. There is a well-defined surjective homomorphism

φ : kM∗ (k)→ grI•(k)

which takes the class of a pure symbol {a} to the corresponding 1-fold Pfister form
〈〈a〉〉.
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Proof. Recalling the definition of Milnor K-theory, we see that kM∗ (k) is the quotient
of the tensor algebra over Z/2 of the F2-vector space k×/(k×)2 by the ideal generated
by elements a⊗ (1− a) for all a ∈ k× \ {1}. Since we have the identifications

kM0 (k) Z/2Z grI•(k)0

kM1 (k) k×/(k×)2 grI•(k)1

we get an induced F2-algebra homomorphism φ : TZ/2(k
×/(k×)2)→ grI•(k). We now

need to check that φ descends to a well-defined homomorphism on the quotient, for
which it is sufficient to check that elements of the shape a ⊗ (1 − a) are mapped to
zero. We have φ(a⊗ (1− a)) = 〈〈a, 1− a〉〉 ∈ I2/I3 = grI•(k)0. Expanding, we see

〈〈a, 1− a〉〉 = 〈〈a〉〉 · 〈〈1− a〉〉 = 〈1,−a〉 · 〈1, a− 1〉 = 〈1,−a, a− 1, a− a2〉.

To check that this form is zero in grI•(k), it is sufficient to show that it is hyperbolic.
But by Theorem 4, it is enough to show that 〈1,−a, a−1, a−a2〉 is isotropic, which is
true since (1, 1, 1, 0) is an isotropic vector. By definition, the graded algebra grI•(k)
is generated by the first degree component, and clearly this is contained in the image
of φ by the identifications above. Hence it follows that φ descends to a well-defined
surjective ring homomorphism .

In fact, φ is an isomorphism, however showing the injectivity of φ is a terribly
difficult endeavour. It is a result of Voevodsky that φ turns out to be an isomorphism
(see [8] for a proof). In particular, this implies there is an isomorphism

kM2 (k)→ I2/I3

{a, b} 7→ 〈〈a, b〉〉.

We are going to prove this degree two isomorphism by elementary means. To do this,
it is sufficient to introduce a group homomorphism from I2/I3 to kM2 (k), which is
left-inverse to φ2.

4.6 Stiefel-Whitney classes

Let us introduce the notation kM(k)/2 for the product
∏

n≥0 k
M
n (k). Let q be a

quadratic form, and let 〈a1, . . . , an〉 be a diagonalisation of q. We define the total
Stiefel-Whitney class sw• of this diagonalisation as the element(

n∏
i=1

(1 + {ai})

)−1
· (1 + {−1})[n/2] ∈ kM(k)/2.
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Then we define the individual Stiefel-Whitney classes swi ∈ kMi (k) of the diagonalisa-
tion 〈a1, . . . , an〉 as the ith graded component of the total class sw•. For sw• to be an
invariant of the quadratic form q, it shouldn’t depend on the choice of diagonalisation.
Indeed, this is the case:

Proposition 13. Let q be a quadratic form. Then the Stiefel-Whitney class sw• of
any two diagonalisations of q are equal.

Proof. Recalling the Witt Chain Equivalence theorem of Subsection 2.9, it is sufficient
to demonstrate the equality for any two chain equivalent diagonalisations, for which it
is sufficient to demonstrate equality for two diagonalisations of the same 2-dimensional
form. So let 〈a, b〉 ∼= 〈c, d〉 be two isomorphic forms. Then we have

sw•(〈a, b〉) = ((1 + {a}) · (1 + {b}))−1 · (1 + {−1})
= (1 + {a}+ {b}+ {a, b})−1 · (1 + {−1})

and thus sw•(〈a, b〉) = sw•(〈c, d〉) if and only if

{ab}+ {a, b} = {cd}+ {c, d}.

By computing determinants of the forms, we see that ab/cd 6= 0 is a square in k,
and so it follows that {ab} = {cd} in kM1 (k). Hence we are left to showing that
{a, b} = {c, d} in kM2 (k). Because c is a value of 〈a, b〉 we have c = ax2+ by2 for some
x, y ∈ k. Since c 6= 0 we may assume first that x 6= 0. Furthermore, because ab, cd
are equal modulo (k×)2, we have d = abcl2, where l ∈ k×. Hence in kM2 (k) we have

{c, d} = {c, abl2c}
= {c.− abl2}+ {c,−c}
= {c,−abl2}
= {ax2 + by2,−ab}
= {ax2(1 + by2/(ax2)),−ab}
= {ax2,−ab}+ {1− (−by2/(ax2)),−ab}
= {a,−ab}+ {1− (−by2/(ax2)),−ab(y/ax)2}
= {a,−a}+ {a, b}
= {a, b}

as required.

By virtue of the above proposition, we may simply define the Stiefel-Whitney class
of q as the Stiefel-Whitney class of any one of its diagonalisations.
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Proposition 14. Let p and q be quadratic forms. Suppose that dim(p) is even. Then

sw•(q) · sw•(p) = sw•(p ⊥ q).

Proof. Choose diagonalisations p = 〈a1, . . . , an〉, q = 〈b1, . . . , b2m〉. Then we have

sw•(q) · sw•(p) =

(
n∏
i=1

(1 + {ai})

)−1
· (1 + {−1})[n/2] ·

(
2m∏
i=1

(1 + {bi})

)−1
· (1 + {−1})[2m/2]

=

(
n∏
i=1

(1 + {ai})
2m∏
i=1

(1 + {bi})

)−1
· (1 + {−1})[n/2]+[m]

= sw•(q ⊥ p)

since [n/2] + [m] = [(n+ 2m)/2].

The above proposition along with the following lemma implies that taking Stiefel-
Whitney classes descends to a well-defined group homomorphism from I to kM 2(k):
Lemma 28. The Stiefel-Whitney class sw•(H) = 1.
Proof. Direct calculation:

sw•(H) = ((1 + {1}) · (1 + {−1})−1 · (1 + {−1})[2/2] = 1.

Hence by Proposition 14, sw•(q) depends only on the class of q in W (k). Since all
elements of the fundamental ideal I have even dimension, the claim that sw• descends
to a well-defined group homomorphism

sw• : I → (kM(k))×

follows.
Lemma 29. Let q be a quadratic form. The first Stiefel-Whitney class sw1(q) coin-
cides with the signed discriminant det±(q) introduced in Subsection 2.8.
Proof. Write q = 〈a1, . . . , an〉 for some ai ∈ k×, 1 ≤ i ≤ n. Then

sw1(q) =

( n∏
i=1

(1 + {ai})

)−1
· (1 + {−1})[n/2]


1

= −
n∑
i=1

{ai}+ [n/2]{−1}

=

{
(−1)[n/2] ·

n∏
i=1

ai

}
= {det

±
(q)}

in kM1 (k) = k×/(k×)2.
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The above lemma along with the characterisation of forms in I2 given in Subsection
2.8 implies that quadratic forms q in I2 have the property that sw1(q) = 1 is trivial.

Lemma 30. Let p, q ∈ I. Then:

1. sw1(p+ q) = sw1(p) + sw1(q).

2. sw2(p+ q) = sw2(p) + sw2(q) + sw1(p) · sw1(q).

Proof. Recalling that for p, q ∈ I we have sw•(p+ q) = sw•(p) · sw•(q), it follows

1+sw1(p+q)+sw2(p+q)+· · · = (1+sw1(p)+sw2(p)+. . . )(1+sw1(q)+sw2(q)+. . . ).

Expanding the right hand side, we get

1 + (sw1(p) + sw1(q)) + (sw2(p) + sw2(q) + sw1(p)sw1(q)) + . . . ,

from which the result follows.

We now consider the second individual Stiefel-Whitney class sw2(q) of a quadratic
form q.

Proposition 15. The Stiefel-Whitney map sw2 is left-inverse to the restriction

φ2 : k
M
2 (k)→ I2/I3

{a, b} 7→ 〈〈a, b〉〉

of the map φ introduced in Proposition 12 to kM2 (k). Hence φ is an isomorphism in
degree two.

Proof. First, by Lemmas 29 and 30, we see that if p, q ∈ I2, then sw2(p + q) =
sw2(p) + sw2(q), which shows that sw2 : I

2 → kM2 (k) is additive. Secondly, we have

sw2(〈〈a, b〉〉) = {a, b}

since

sw•(〈〈a〉〉) = (1 + {−a})−1 · (1 + {−1})
= (1 + {−a}+ {−a,−a}+ {−a,−a,−a}+ . . . ) · (1 + {−1})
= (1 + {−a}+ {−a,−1}+ {−a,−1,−1}+ . . . ) · (1 + {−1})
= (1 + {−a} · (1 + {−1}+ {−1,−1}+ . . . )) · (1 + {−1})
= (1 + {−a} · (1 + {−1}−1) · (1 + {−1})
= 1 + {−1}+ {−a} = 1 + {a}
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shows that sw1(〈〈a〉〉) = {a} and sw2(〈〈a〉〉) = 0, and since 〈〈a, b〉〉+ 〈〈ab〉〉 = 〈〈a〉〉+
〈〈b〉〉 in the Witt ring, we have the equality of the expressions

sw2(〈〈a, b〉〉) + sw2(〈〈ab〉〉) + sw1(〈〈a, b〉〉) · sw1(〈〈ab〉〉)

and
sw2(〈〈a〉〉) + sw2(〈〈b〉〉) + sw1(〈〈a〉〉) · sw1(〈〈b〉〉),

from which we see sw2(〈〈a, b〉〉) = sw1(〈〈a〉〉) · sw1(〈〈b〉〉) = {a, b}.
We now check that sw2 descends to a well-defined group homomorphism I2/I3 →

kM2 (k). We want to show that sw2(I
3) = 0, for which it is sufficient to show that for

any 3-fold Pfister form 〈〈a, b, c〉〉, sw2(〈〈a, b, c〉〉) = 0 (since they generated I3). Since
in the Witt ring we have 〈〈a, b〉〉 = 〈〈a〉〉+ 〈〈b〉〉 − 〈〈ab〉〉, it follows that

〈〈a, b, c〉〉 = 〈〈a, c〉〉+ 〈〈b, c〉〉 − 〈〈ab, c〉〉

whence

sw2(〈〈a, b, c〉〉) = {a, c}+ {b, c} − {ab, c}
= {ab, c} − {ab, c} = 0.

Now to show sw2 is left-inverse to φ2, it is sufficient to show that sw2◦φ2 is the identity
map when restricted to pure symbols (since they generate kM2 (k). Let {a, b} ∈ kM2 (k).
Then

(sw2 ◦ φ2)({a, b}) = sw2(〈〈a, b〉〉) = {a, b}

as required.
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5 Norm residue isomorphism theorem in degree two
Let Br2(k) denote the subset of elements of Br(k) with order at most 2; this is clearly
a subgroup. We have a map

hk : k
M
2 (k)→ Br2(k)

defined on the classes of pure symbols by {a, b} + 2KM
2 (k) 7→ (a, b)k, and extended

to the whole of kM2 (k) as a group homomorphism. This map is well-defined: The
Brauer-equivalence class of (a, b)k is bilinear with respect to a and b by Lemma 19
and the easy fact that (a, b)k ∼= (b, a)k. By the lemma following after, it has order at
most two in the Brauer group. And (a, b)k is split if a+ b = 1, by Example 4.

Theorem 9 (Norm-residue, Merkurjev [6]). The norm residue homomorphism

hk : k
M
2 (k)→ Br2(k)

taking a pure symbol {a, b} mod 2KM
2 (k) to the Brauer-equivalence class of (a, b)k, is

an isomorphism.

The rest of the dissertation is dedicated to the proof of Theorem 9. For the
record, we note the fact that the norm map on Milnor K-theory and the norm residue
homomorphism just introduced commute as follows: We have

NL/F (hL(u)) = hF (NL/F (u)).

It also commutes with the induced homomorphism KM
2 F → KM

2 L as follows: We
have for u ∈ KM

2 F
hF (u)L = hL(uL).

Proofs of these facts are found in [2].

5.1 Key exact sequence

The proof of Theorem 9 will follow easily once we have proved the exactness of the
sequence given in the introduction in Equation (5). For the sake of convenience, we
restate:

Theorem 10 (Key exact sequence). Let C be a smooth conic curve over a field k of
characteristic not 2. Then the sequence

KM
2 (k) KM

2 (k(C))
⊕

p∈C κ(p)
× k×∂ N

where ∂ =
⊕

∂p and N is given by the norm maps Nκ(p)/k, is exact.
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Following an approach similar to Milnor in [7], we will define an ascending filtration
on KM

2 (k(C)) by Milnor K-groups associated to a sequence of Riemann-Roch spaces.
Then we will demonstrate the key exact sequence for each of these intermediate spaces,
from which the main result follows by taking a direct limit.

We now introduce these spaces: Fix a closed point p0 of C of degree 2. Given an
integer n ∈ Z, we let Ln := L(np0). Thus Ln consists of 0, and all of those f ∈ k(C)
that have a pole at p0 of order at most n, and no poles anywhere else. We treat p0
as the point at infinity. Clearly

· · · ⊂ L−3 ⊂ L−2 ⊂ L−1 ⊂ L0 = k ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . ,

and Ln · Lm ⊂ Ln+m for all n,m ∈ Z. We have the natural inclusion maps in,m :
Ln → Lm for every m ≥ n.

We now assume that C is nonsplit, since in the split case Theorem 10 is covered by
Milnor’s exact sequence for the computation of the Milnor K-theory of the function
field of P1, given in [7]. Then by Example 5, for each n ≥ 0 the Riemann-Roch space
Ln has dimension 2n + 1, and otherwise Ln has dimension 0. Also, every point on
C has even degree, since in this case Q is a division algebra, and thus the degree of
every finite splitting field extension is even. Furthermore, given a closed point p on
C of degree 2n, we may find a nonzero function πp ∈ Ln such that div(πp) = p−np0.

Now for each n ∈ Z, we let Mn be the subgroup generated by symbols {f, g}
where f, g ∈ L×n . So Mn := {L×n , L×n }, where L×n := Ln \ {0}. Each Mn is a sub-
group of KM

2 (k(C)). Indeed, M0 may be identified with the image of the induced
homomorphism KM

2 (k)→ KM
2 (k(C)), and M−1 = 0. We have the filtration

0 =M−1 ⊂M0 ⊂M1 ⊂ · · · ⊂ KM
2 (k(C)).

Lemma 31. We have
KM

2 k(C) =
⋃
n∈Z

Mn.

Proof. Given some f ∈ k(C), split div(f) into its poles and zeros, so that we can
write

div(f) = D+ −D−
where D+ and D− are effective divisors on C with deg(D+) = deg(D−) = 2l for some
integer l (recall we assume that C is nonsplit, so the degree of every point is even).
Then choose functions g, h ∈ k(C) with divisors

div(g) = D+ − lp0, div(h) = D− − lp0.

Then g, h ∈ Ll and div(f) = div(g/h), so we see that f = λg/h for some λ ∈ k×. Let
f ′ ∈ k(C) be arbitrary and apply the above to get f ′ = λ′g′/h′ for some λ′ ∈ k× and
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g′, h′ ∈ Ll. Then we have

{f, f ′} = {λg/h, λ′g′/h′} = {λg, λ′g′}+ {h, h′} − {λg, h′} − {h, λ′g′} ∈Ml.

Hence KM
2 k(C) ⊂

⋃
n∈ZMn. The other inclusion is immediate.

5.2 The first connecting isomorphism

Suppose g ∈ L×n . Then the support of div(g) does not contain any closed points p
of degree strictly greater than 2n. Hence given a closed point p of degree 2n, the
subgroup Mn−1 is contained in the kernel of the residue homomorphism ∂p. Hence ∂
descends to a well-defined homomorphism

∂n :Mn/Mn−1 →
⊕

deg p=2n

κ(p)×.

Lemma 32. For each n ≥ 2, ∂n is an isomorphism.

Proof. For each p ∈ C of degree 2n > 2, denote by εp the k-linear map

εp : Ln−1 → κ(p)

given for each f ∈ Ln−1 by f 7→ f(p). Since p has degree 2n, it does not belong to the
support of a divisor in Ln−1. So it follows that if f(p) = 0 in κ(p) for some f ∈ Ln−1,
then f = 0. Hence εp is injective.

We now show how to get an element of κ(p) from the evaluation at p of a function
in the Riemann-Roch space Ln−1. Fix nonzero u ∈ κ(p). Define the k-linear map

L1 → κ(p)/ Im εp, h 7→ u · εp(h) + Im εp.

The dimension on the right hand side is

dimk κ(p)/ Im εp = dimk κ(p)− dimk Ln−1 = 2n− 2(n− 1) + 1 = 1.

The dimension on the left hand side is dimk L1 = 3. Hence this map is noninjective,
so there exists a nonzero h ∈ L1 such that u · h(p) ∈ Im εp. We have h(p) 6= 0 in κ(p)
since deg(p) > 2. Hence for some f ∈ Ln−1, we have u =

(
f
h

)
(p).

Now the above allows us to define an inverse

φn :
⊕

deg p=2n

κ(p)× →Mn/Mn−1
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to ∂n by setting φn =
∑
φp with

φp : κ(p)
× →Mn/Mn−1

u 7→
{
πp,

f

h

}
+Mn−1

where f, h are functions derived as in the above such that u =
(
f
h

)
(p), and πp is a

function in Ln with div(πp) = p− np0. We know such a function exists since p− np0
is a divisor of degree zero, and every divisor of degree zero on C is principal. To prove
this association does not depend on the choice of f, h, we need to introduce a lemma
characterising Riemann-Roch functions vanishing at p.

Lemma 33. Fix p ∈ C of degree 2n, with p 6= p0. Let

εp : Lm → κ(p)

be the evaluation map, εp(f) = f(p). Pick a function f ∈ Lm such that f ∈ Ker εp.
Then f = πpg for some g ∈ Lm−n.

Proof. The case m < n was considered previously. Suppose m ≥ n. Consider the
restriction to Ln of εp, and let f ∈ Ker εp∩Ln.Then we see div(f) = p−np0 = div(πp),
so f = λπp for some nonzero λ ∈ k. In particular, we see Ker εp ∩ Ln is one-
dimensional. So rank-nullity on εp restricted to Ln gives

dimk Im(εp|Ln) = 2n+ 1− 1 = 2n = dimk κ(p).

In particular, we see that εp is surjective, since it is so when restricted to a subspace.
Then applying rank-nullity again we see

dimkKer εp = dimk Lm − dimk κp = 2m− 2n+ 1.

Consider the map Lm−n → Lm induced by multiplication by πp. Since πp(p) = 0 the
image is contained in Ker εp. Also this map is injective, so the image has dimension
dimk Lm−n = 2m− 2n+ 1. Hence Ker εp = πpLm−n. This proves the lemma.

Now we will show that φp is well-defined. It clearly doesn’t depend on the choice
of scalar multiple for πp. So let f, h be as before and suppose f ′ ∈ Ln−1, h′ ∈ L1 are
nonzero functions such that

(
f ′

h′

)
(p) = u. Then clearly f ′h−fh′ ∈ Ln, and f ′h−fh′

vanishes at p. Then since p is degree 2n, we must have f ′h − fh′ = λπp for some
λ ∈ k. There are two cases.

1. λ = 0. Then f/h = f ′/h′, so {πp, f/h}+Mn−1 = {πp, f ′/h′}+Mn−1.
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2. λ 6= 0. A computation yields{
λπp
f ′h

,
fh′

f ′h

}
+Mn−1 =

{
πp,

f

h

}
−
{
πp,

f ′

h′

}
+Mn−1

Then since we have 1 = λπp
f ′h

+ fh′

f ′h
, it follows that

{
πp,

f
h

}
+Mn−1 =

{
πp,

f ′

h′

}
+

Mn−1.

Next, we will show that φp is a group homomorphism. So suppose u, v ∈ κ(p)×. Then
we may choose functions fu, fv, fuv and hu, hv, huv as before such that(

fu
hu

)
(p) = u,

(
fv
hv

)
(p) = v,

(
fuv
huv

)
(p) = uv.

Then the function fufvhuv − fuvhuhv ∈ L2n−1 vanishes at p, so by Lemma 33, we
have fufvhuv− fuvhuhv = πpg for some g ∈ Ln−1. Then an analogous computation to
before yields

0 =

{
πpg

fufvhuv
,
fuvhuhv
fufvhuv

}
≡
{
πp,

fuv
huv

}
−
{
πp,

fu
hu

}
−
{
πp,

fv
hv

}
modulo Mn−1. Hence{

πp,
fuv
huv

}
+Mn−1 =

{
πp,

fu
hu

}
+Mn−1 =

{
πp,

fv
hv

}
+Mn−1,

so φp(uv) = φp(u)+φp(v). Clearly φp preserves the identity (we can take f = h = 1).
By the above we get that φn is a homomorphism. We now show that it is the

inverse to ∂n.

1. ∂n ◦ φn = id. Let p be a point of degree 2n > 2 and let u ∈ κ(p)×. Choose
nonzero f ∈ Ln−1, h ∈ L×1 such that

(
f
h

)
(p) = u. Then since p is the only point

of degree 2n at which the symbol {πp, f/h} has nontrivial residue, we have

∂n ◦ φn(u) =
∑

deg(x)=2n

∂x

({
πp,

f

h

})
=

(
f

h

)
(p) = u.

Hence ∂n ◦ φn is the identity.

2. φn ◦ ∂n = id. It is sufficient to show that φn is surjective. We do this by
showing we may achieve two types of element. First, given f ∈ L×n−1, we see
that all classes of symbols of the form {πp, f} are of the form φn(f). Second,
we aim to show all classes of symbols of the form {πp, πq} are achievable, where

61



p, q are distinct points of degree 2n. So let g ∈ L×n−1, h ∈ L×1 be functions
such that πp(q) =

(
g
h

)
(q). Then the function πph − g ∈ L×n+1 vanishes at

q, and so by Lemma 33 we have πph − g = πqr for some function r ∈ L×1 .
Then another analogous computation to the proof of well-definedness / the
homomorphic property of φp yields

0 =

{
πqr

πph
,
g

πph

}
+ Im(φn) = {πp, πq}+ Im(φn).

Hence {πp, f}, {πp, πq} ∈ Im(φn). It remains to show that classes of elements
of these forms generate the quotient group Mn/Mn−1. Let {f, g} + Mn−1 ∈
Mn/Mn−1 with f, g ∈ L×n . Then we may write f, g as finite products of the
form

f = λfπp1πp2 . . . πpl , g = λgπq1πq2 . . . πqm

where λf , λg ∈ k× and the pi, qi are closed points of degree at most 2n. Then
we may write {f, g} = {λfπp1πp2 . . . πpl , λgπq1πq2 . . . πqm}, and using bilinearity
of symbols this splits into a sum of symbols of the form {πpi , πpj} and {λ, πx}.

5.3 The second connecting isomorphism

The filtration
M−1 ⊂M0 ⊂M1 ⊂M2 ⊂M3 ⊂ · · · ⊂ KM

2 k(C)

may be refined further by adding an extra subgroup M0 ⊂ M ′ ⊂ M1, defined by
M ′ = {L×1 , L×0 } = {L×1 , k×}. We denote by A′ the subgroup of

⊕
deg(p)=2 κ(p)

×

consisting of those elements (xp) such that xp ∈ k× for all closed points p of degree
2, and

∏
p xp = 1.

Lemma 34. The subgroup M ′ is generated by M0 and symbols of the form {πp, x}
with x ∈ k×. and p 6= p0 closed points of degree 2.

Proof. Simply write any {f, x} ∈M ′ as {λπp, x} = {λ, x}+ {πp, x} with λ ∈ k× and
p the closed point of degree 2 where f vanishes. Then since elements of the shape
{f, x} are additive generators for M ′, the claim follows.

By virtue of this lemma and the fact that every symbol {πp, x} has residues x, x−1
at p, p0 respectively and no other nontrivial residues at closed points of degree 2, we
see that ∂1(M ′/M0) ⊂ A′.

Lemma 35. The restriction ∂′ : M ′/M0 → A′ of the homomorphism ∂1 is an iso-
morphism.
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Proof. It is sufficient to exhibit an inverse isomorphism. Let

ψ : A′ →M ′/M0,

(xp) 7→
∑

deg p=2,p 6=p0

{πp, xp}+M0.

Clearly this is a surjective homomorphism, since M ′/M0 is generated by classes of
elements of the form {πp, x} with x ∈ k× and p 6= p0 a closed point of degree 2., and
hence to achieve the class of the symbol {πq, x} we send the family (xp) with xp = x
for p = q, xp0 = x−1 and xp = 1 otherwise. Hence to show ψ is inverse to ∂′, it is
enough to show ∂′ ◦ ψ = id. Let (xp) ∈ A′. Then

∂′(ψ((xp))) = ∂1

( ∑
deg p=2,p 6=p0

{πp, xp}+M0

)
.

Fix p 6= p0. The only symbol in the sum above with nontrivial residue at p is {πp, xp}
with residue xp. At p0 each symbol {πp, xp} with p 6= p0 has residue x−1p . Hence
∂′ ◦ ψ((xp)) is the family (yp) such that yp = xp for p 6= p0 and yp0 =

∏
p 6=p0 x

−1
p . But

then (yp) = (xp) in light of the relation
∏

p xp = 1.

5.4 Joining the connecting isomorphisms

We will now use the previous two isomorphisms to build a chain complex of short
exact sequences. To achieve this we need the following "bridging" exact sequence:

Lemma 36. The sequence

0 M1/M
′

[⊕
deg p=2 κ(p)

×
]
/A′ k×

∂1 N

is exact.

Proof. (Sketch of proof.) By Theorem 8, we have⊕
deg p=2

κ(p)× ∼=
⊕
K⊂Q

K×,

where the direct sum is taken over all quadratic subfieldsK ⊂ Q. By this isomorphism
we get a canonically isomorphic induced norm map

N :
⊕
K⊂Q

K× → k×
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whose action on each K in the direct sum equals the restriction to K× of the reduced
norm NK/k : K× → k×. Now we denote by A(Q) the kernel of this norm homo-
morphism in Q. By Theorem 8, A′ corresponds to the subgroup of A(Q) formed by
those families (aK) such that aK ∈ k× for every K ⊂ Q. In other words we have
A′ = A(Q) ∩

⊕
k×. Now Lemma 36 is equivalent to the statement that the induced

homomorphism
∂1 :M1/M

′ → A(Q)/A′

is an isomorphism. To prove ∂1 is an isomorphism, Merkurjev writes the quotient
A(Q)/A′ as an abstract group G given in terms of generators and relations, and then
proves M1/M

′ is isomorphic to G. This process is quite lengthy to present in this
dissertation however, and the details are deferred to Merkurjev.

We now prove Theorem 10. To do this we need:

Lemma 37. For each n ≥ 1, the sequence

0 Mn/M0

⊕
deg p≤2n κ(p)

× k×.∂ N (25)

is exact.

Proof. We prove it by induction. For the case n = 1, Lemmas 36 and 35 (i.e. the
connecting isomorphisms) imply the exactness of the sequences

0 M ′/M0 A′ 0
∂1

and

0 M1/M
′

[⊕
deg p=2 κ(p)

×
]
/A′ k×.

∂1 N

Hence we have a diagram

0 0 0

0 M ′/M0 A′ 0 0

0 M1/M0

⊕
deg p=2 κ(p)

× k× 0

0 M1/M
′

[⊕
deg p=2 κ(p)

×
]
/A′ k× 0

0 0 0
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in which all rows and columns bar the middle row are exact. Clearly the middle row is
a complex, hence by a general result the middle row is exact, proving (25) for n = 1.

For the induction step, we construct a similar diagram. Lemma 32 gives an exact
sequence

0 Mn/Mn−1
⊕

deg p=2n κ(p)
× 0.

Hence assuming (25) holds for n− 1 we have a diagram

0 0 0

0 Mn−1/M0

⊕
deg p≤2(n−1) κ(p)

× k× 0

0 Mn/M0

⊕
deg p≤2n κ(p)

× k× 0

0 Mn/Mn−1
⊕

deg p=2n κ(p)
× 0 0

0 0 0

where all rows and columns bar the middle row are exact. By the same reasoning as
before, the middle row is therefore exact. This concludes the induction step.

We know from Lemma 31 that KM
2 k(C) =

⋃
Mn, and so taking a direct limit over
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the system

0 0 0

0 M1/M0

⊕
deg p≤2 κ(p)

× k× 0

0 M2/M0

⊕
deg p≤4 κ(p)

× k× 0

0 M3/M0

⊕
deg p≤6 κ(p)

× k× 0

0 M4/M0

⊕
deg p≤8 κ(p)

× k× 0

...
...

...

yields the sequence

0 KM
2 k(C)/M0

⊕
p∈C κ(p)

× k× 0

which is exact by Lemma 37 and the fact that direct limits preserve exactness. Hence
by identifying M0 = KM

2 (k) we have proved the theorem.

5.5 Hilbert Theorem 90 for KM
2

In this subsection we use a variant of Hilbert’s Theorem 90 for Milnor K-theory to
reduce elements in 2KM

2 (k) that are equal to 0 to one pure symbol. The theorem we
aim to achieve is

Theorem 11. Let u ∈ KM
2 (k). If 2u = 0, then u = {−1, a} for some a ∈ k×.

We begin with a lemma which will help us later:

Lemma 38. Let L/k be a quadratic extension. Then the group KM
2 L is generated by

symbols of the form {x, a} with x ∈ L× and a ∈ k×.

Proof. See [1], Corollary 5.3 and apply to the case n = 2.
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From now on we let L/k be a quadratic Galois extension with Galois group G, and
denote by σ ∈ G the nontrivial conjugation. There is a natural action of σ on KM

2 (L)
defined on pure symbols by σ{a, b} = {σa, σb}. Given a field extension E/k linearly
disjoint to L/k, then the tensor product L⊗k E is a quadratic Galois field extension
of E, with Galois group naturally isomorphic to G. We denote LE := L⊗k E.

Let
V (E) := KM

2 (LE)/(σ − 1)KM
2 (LE).

Then for every homomorphism
E → E ′

of field extensions of k linearly disjoint with L/k, there is an induced homomorphism

V (E)→ V (E ′)

defined in the natural way.

Proposition 16. Given a smooth projective conic curve C over k such that C splits
over L, the induced homomorphism

ψ : V (k)→ V (k(C))

is injective.

Proof. We have

V (k) = KM
2 (L)/(σ − 1)KM

2 (L), V (k(C)) = KM
2 (L(C))/(σ − 1)(KM

2 (L(C)).

Suppose u ∈ KM
2 (L) is such that ψ(u) = 0, so that

uL(C) = (σ − 1)v,

where v ∈ KM
2 (L(C)). Now for each closed point p ∈ C, we define the L-algebra

κ(p)L := L⊗k κ(p)

as the extension of scalars of the residue field κ(p) to L. Then it is clear that for
each p ∈ C, κ(p)L is isomorphic to the product of the residue fields κ(q) for all closed
points q ∈ CL over p. Hence, let us denote

∂p(v) =
∏

∂q(v) ∈ κ(p)×L ,
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where the product of the ∂q(v) ∈ κ(q)× is taken over all closed points q over p.
Furthermore, we have

∂p(v)/σ(∂p(v)) = ∂p((1− σ)v)
= ∂p(uL(C))

= 1,

hence ∂p(v) = σ(∂p(v)), which shows that ∂p(v) ∈ κ(p)×. Now we have

∏
p∈C

Nκ(p)/k(∂p(v)) = NL/k

(∏
q∈CL

Nκ(q)/L(∂q(v))

)
,

and the key exact sequence of Theorem 10 applied to CL yields∏
q∈CL

Nκ(q)/L(∂q(v)) = 1

so that
∏

p∈C Nκ(p)/k(∂p(v)) = 1. Now using the key exact sequence for C, we see that
there exists some w ∈ KM

2 k(C) with ∂p(w) = ∂p(v) for every p ∈ C. Now let

v′ = v − wL(C) ∈ KM
2 (L(C)).

Then applying ∂p to both sides, we see

∂p(v
′) = ∂p(v)∂p(w)

−1 = ∂p(v) · ∂p(v)−1 = 1.

Hence again applying the key exact sequence, we have s ∈ KM
2 L with sL(C) = v′.

Now
(σ − 1)sL(C) = (σ − 1)v′ = (σ − 1)v = uL(C)

which means ((σ−1)s−u)L(C) = 0. Now L(C)/L is a purely transcendental extension,
and by reasoning to be justified later in the proof of injectivity of the norm residue
homomorphism, the induced map

KM
2 (L)→ KM

2 (L(C))

is injective. In particular, this implies (σ−1)s−u = 0. So u = (σ−1)s, which proves
the proposition.

This proposition implies

Lemma 39. Given any finitely generated subgroup H ⊂ k×, there is a field extension
K/k such that:
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1. K/k is linearly disjoint with L/k.

2. The natural homomorphism V (k)→ V (K) is injective.

3. We have H ⊂ NL′/K(L
′×) where L′ = LK.

Proof. We proceed by induction on the number of generators n for H. For the base
step, assume H = 〈b〉 is generated by one element. We set K = k(C), where C is the
associated conic to the quaternion algebra Q = (a, b)k, where a ∈ k× is such that L =
k(
√
a). Now certainly Q splits over k(C) = K, and thus b ∈ NL′/K(L

′×) by Lemma
17. Since C splits over L, Proposition 16 gives that the natural homomorphism
V (k)→ V (K) is injective.

For the induction step, let us assume the claim holds for a subgroup generated by
n− 1 elements, and write

H = G+ 〈an〉,
where G is generated by n − 1 elements. By induction, we may find a field exten-
sion K ′/k such that K ′/k is linearly disjoint with L/k, the induced homomorphism
V (k)→ V (K ′) is injective, and

G ⊂ NLK′/K′(L
′×).

Now consider 〈an〉K′ ⊂ (K ′)×. By the base step n = 1, we get a field extension K ′′/K ′
with properties 1-2, and such that

〈an〉K′′ ⊂ NLK′′/K′′((LK
′′)×).

But then also GK′′ ⊂ NLK′′/K′′((LK
′′)×), which completes the induction step.

We now introduce a short interlude to present a classical theorem in algebra:

Theorem 12 (Hilbert Theorem 90, classical.). Suppose L/F is a finite Galois exten-
sion of degree n, such that the Galois group G = Gal(L/F ) is cyclic with generator
σ. Then if a ∈ L is such that NL/F (a) = 1, then there exists b ∈ L with

a = σ(b)/b.

Proof. Suppose a ∈ L has norm

NL/F (a) =
n−1∏
i=0

σi(a) = 1.

Then to prove the theorem, it is sufficient to show that the map

aσ(·) : L→ L
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has eigenvalue 1. Now we extend aσ(·) to the tensor product of L-vector spaces by
defining

1L ⊗ aσ(·) : L⊗F L→ L⊗F L,
`⊗ `′ 7→ `⊗ aσ(`′).

The primitive element theorem of field theory lets us write L = F (α), where α ∈ L
has minimal polynomial

f(t) =
n−1∏
i=0

(t− σi(α)),

whence a chain of isomorphisms

L⊗F L ∼= L⊗F F (α) ∼= L⊗F (F [t]/f(t)) ∼= L[t]/f(t) ∼= Ln

so that we identify

`⊗ p(α) = `(p(α), p(σα), . . . , p(σn−1α))

where we wrote the second factor of the tensor as a polynomial in α. But by this
isomorphism, the map aσ(·) becomes

aσ(·) : Ln → Ln,

`(p(α), . . . , p(σn−1α)) 7→ `(ap(σα), . . . , σn−1ap(σnα)).

Thus
aσ((`1, . . . , `n)) = (a`n, σa`1, . . . , σ

n−1a`n−1).

Hence we see that (1, σa, σaσ2a, . . . , σa · · · σn−1a) is an eigenvector with eigenvalue
1.

Now given any two elements x, y ∈ L×, let us denote by 〈x, y〉 the image of the
symbol {x, y} ∈ KM

2 (L) in V (k).

Lemma 40. There is a well-defined group homomorphism

f = fk : NL/k(L
×)⊗ k× → V (k),

NL/k(x)⊗ a 7→ 〈x, a〉.

Proof. Let us first show the map is well-defined. Given x, y ∈ L× with NL/k(x) =
NL/k(y), then NL/k(x/y) = 1, and thus by the classical variant of Hilbert Theorem
90 introduced above, we have

y = xzσ(z)−1

for some z ∈ L×. Then since

{y, a} = {xzσ(z)−1, a} = {x, a}+ {z, a} − {σ(z), a} = {x, a} − (σ − 1){z, a}

we see that 〈y, a〉 = 〈x, a〉.
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Lemma 41. Suppose b ∈ NL/k(L
×). Then

f(b⊗ (1− b)) = 0.

Proof. There are two cases:

1. b is a square in k×. Put b = c2 for some c ∈ k×. Then

f(b⊗ (1− b)) = 〈c, 1− c2〉 = 〈c, (1− c)(1 + c)〉 = 〈c, 1− c〉+ 〈c, 1 + c〉
= 〈c, 1 + c〉
= 〈−1, 1 + c〉 = 0,

since we may write −1 = zσ(z)−1 for some z ∈ L×, whence

〈−1, 1 + c〉 = 〈zσ(z)−1, 1 + c〉 = 〈z, 1 + c〉 − 〈σ(z), 1 + c〉
= 〈z, 1 + c〉 − 〈z, 1 + c〉 = 0.

2. b is not a square in k. Then we have a quadratic field extension

K = k[t]/(t2 − b).

Let
L′ = L[t]/(t2 − b).

Then L′ is either a field or the direct sum of two copies of K. Let us denote by
u ∈ K the image of the polynomial t, so that we have u2 = b. Let x ∈ L× be
such that NL/k(x) = b. Then we have the equalities

NL′/K(x/u) = b/u2 = 1,

thus NL′/L(1− u) = 1− b.We get an automorphism of L′ over K by extending
σ in the natural way. Thus by again applying the classical variant of Hilbert
Theorem 90, we may find v ∈ L′× with

vσ(v)−1 = x/u.

Hence

f(b⊗ (1− b)) = 〈x, 1− b〉 = 〈x,NL′/L(1− u)〉
= NL′/L〈x, 1− u〉

= NL′/L

〈x
u
, 1− u

〉
= NL′/L〈vσ(v)−1, 1− u〉
= −(σ − 1)NL′/L〈v, 1− u〉 = 0.
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We are now finally prepared to introduce the powerhouse results of this disserta-
tion, beginning with a variant of Hilbert Theorem 90 for KM

2 (k):

Theorem 13 (Hilbert Theorem 90 for KM
2 (k).). The sequence

KM
2 L KM

2 L KM
2 k

σ−1 NL/k

is exact.

Proof. Suppose u ∈ KM
2 (L) is such that NL/k(u) = 0. By Lemma 38, we may write

u =
n∑
i=1

{xi, ai}

where the xi ∈ L× and ai ∈ k×. Furthermore, we have

NL/k(u) =
n∑
i=1

{NL/k(xi), ai} = 0.

Hence turning back to the very definition of KM
2 k, we see that u ∈ (b⊗ (1− b) | b ∈

k× \ {1}), and thus we may write

n∑
i=1

NL/k(xi)⊗ ai =
m∑
i=1

bi ⊗ (1− bi) (26)

for some bi ∈ k×.
Let H be the subgroup of k× generated by the NL/k(xi) and bi. Then Equation

26 holds in H ⊗ k×, and Lemma 39 tells us that there is a field extension K/k
linearly disjoint from L/k such that the natural homomorphism V (k) → V (K) is
injective, and H ⊂ NL′/K(L

′×) with L′ = LK. Hence Equation 26 also holds in
NL′/K(L

′×) ⊗K×. Applying the map fK of Lemma 40 to both sides of Equation 26
and keeping Lemma 41 in mind, we see

m∑
i=1

〈xi, ai〉 = fK

(
n∑
i=1

NL/k(xi)⊗ ai

)
=

m∑
i=1

fK(bi ⊗ (1− bi)) = 0.

Hence uL′ ∈ (σ − 1)KM
2 L

′. We have that the map V (k) → V (K) is injective. It
follows that u ∈ (σ − 1)KM

2 L.
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We are now ready to prove Theorem 11. Let G = Z/2Z and denote by σ ∈ G
the nontrivial element. Let L = k((x)) be the field of Laurent power series with
coefficients in k, and let G act on L by σ(x) = −x. Then letting

E = LG = {f ∈ L | σ(f) = f}

be the fixed field of G in L, we get a quadratic Galois extension L/E. The canonical
discrete valuation on L with uniformising parameter x yields a residue homomorphism
∂ : KM

2 (L) → k×. There is also a specialisation homomorphism sx : KM
2 L → KM

2 k
defined by s(u) := ∂({−x} · u).

Lemma 42. The diagram

KM
2 L KM

2 L

k× KM
2 L

σ−1

∂ sx

·{−1}

where the bottom map is multiplication by the pure symbol {−1}, is commutative.

Proof. Let u ∈ KM
2 L. We consider two cases:

1. u = {f, g} for power series f, g ∈ k[[t]] with nonzero constant term. Then
sx(u) = {f(0), g(0)} and (σf)(0) = f(0), (σg)(0) = g(0). Hence

sx◦(σ−1){f, g} = sx({σf, σg})−sx({f, g}) = {(σf)(0), (σg)(0)}−{f(0), g(0)} = 0.

On the other hand, since ∂{f, g} = 0, we have {−1} · ∂{f, g} = 0. So the maps
commute for this element.

2. u = {x, g} with g as before. Then {−1} · ∂(u) = {−1, g(0)}, and

sx ◦ (σ − 1){x, g} = sx({−x, σ(g)} − {x, g}) = sx({−x, σ(g)})− sx({x, g}).

We have sx({x, g}) = ∂({−x, x, g}) = 0 since {−x, x} = 0, and

sx({−x, σ(g)}) = ∂({−x,−x, σ(g)}) = ∂({x,−1, σ(g)}+ {−1,−1, σ(g)})
= {−1, σ(g)(0)}+ 0 = {−1, g(0)}.

So the maps commute for this element too.

It remains to observe that the symbols {f, g} and {x, g} generate the group KM
2 L,

and hence the diagram commutes.

73



To finish the proof of Theorem 11, let u ∈ KM
2 (k) be such that 2u = 0. Then

2uE = 0, and so NL/E(uL) = 2uE = 0. Then Theorem 13 gives that uL = (σ − 1)v
for some v ∈ KM

2 (L). Then Lemma 42 implies

u = sx(uL) = sx((σ − 1)v) = {−1, ∂(v)}.

One further result will be useful in the proof of the main theorem. Let L/k be a
quadratic extension, and denote by σ the nontrivial element of the Galois group of
L/K.

Lemma 43. The sequence

kM2 k kM2 L kM2 k
NL/k

is exact.

Proof. Let u ∈ KM
2 (L) with NL/k(u) = 2v, where v ∈ KM

2 k. Then by linearity we
have NL/k(u − vL) = NL/k(u) − NL/k(vL) = 2v − 2v = 0. By Theorem 13 we then
have u− vL = (σ − 1)w where w ∈ KM

2 L. Therefore

u = vL + (σ − 1)w = vL − (w + σw) + 2σw

= (v −NL/k(w))L + 2σw ∈ (v −NL/k(w))L + 2KM
2 (L)

as required.

5.6 Injectivity of the norm residue homomorphism

Equipped with Theorem 10 and the consequences of Hilbert’s Theorem 90 for KM
2 (k)

we are now going to provide the injectivity part of the proof of Theorem 9. The proof
is by induction on n. For n = 1 and n = 2 it follows by

Proposition 17. Let a, b, c, d ∈ k×. Then 0 = {a, b}+ {c, d} ∈ kM2 (k) if and only if
the Albert form A{a,b}+{c,d} is hyperbolic.

Proof. Suppose {a, b} + {c, d} = 0. Then since {c, d} = −{c, d} in kM2 (k), we have
{a, b} = {c, d}, which from Proposition 15 it follows 〈〈a, b〉〉 = 〈〈c, d〉〉. Hence, in the
Witt ring W (k), we have 〈〈a, b〉〉 − 〈〈c, d〉〉 = 0. But this just means A{a,b}+{c,d} is
hyperbolic. The converse may be established similarly.

Now suppose hk ({a, b}+ {c, d}) = 0. Then (a, b)k ⊗k (c, d)k ∼ k in the Brauer
group, from which it follows (a, b)k ∼ (c, d)k. Then these must be isomorphic as
central simple algebras, so in particular, their reduced norms are isomorphic. Hence
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〈〈a, b〉〉 = 〈〈c, d〉〉. In other words, {a, b} = {c, d} in kM2 (k), hence {a, b}+ {c, d} = 0.
This concludes the base step.

Now, the induction step: Assume that hk is injective when restricted to sums
of n symbols. Suppose hk ({a, b}+ v) = 0 where v is a sum of n symbols., and
{a, b} 6= 0. Consider the field extension L/k where L = k(C) is the function field of
the associated conic C : aX2 + bY 2 = abZ2 to the quaternion algebra (a, b)k. We see
that C is anisotropic. Make the change of variables x = X/Z, y = Y/Z. Then since
x2/b+ y2/a = 1, in KM

2 (L) one has{
x2

b
,
y2

a

}
= −{a, b}+

{
x2, y2

}
− {b, y2} − {x2, a}

= 2

{
x,
y2

a

}
− 2{b, y} − {a, b}.

Denote r = {x, y2/a} − {b, y}. The above computation shows that {a, b} = 2r in
KM

2 (L).
By definition, (a, b)k is split over L. Hence hL((a, b)k + vL) = hL(vL) = 0. By our

inductive hypothesis we have vL = 2w, where w ∈ KM
2 L. Now set cp = ∂p(w) for

each p ∈ C. Since ∂p(vL) = 1 for every p ∈ C, we have c2p = ∂p(2w) = 1 ∈ k×, so
cp = (−1)np where np = 0 or np = 1. Now set p0 to be the closed point of degree two
given by the equation Z = 0 (the point at infinity in the AZ affine chart). Then we
may define the divisor

D :=
∑
p∈C

npp

which clearly has finite support, and degree 2m by the fact that every point of C is
even, since C is anisotropic. Now the divisor D−mp0 is degree zero, hence principal,
so we may choose f ∈ L× with divf = D −mp0. Now we set

w′ = w + {−1, f}+ lr.

with l = m+ np0 . We now compute the residues of w′ at each p ∈ C. There are two
cases.

1. p = p0. Then

∂p0(r) = ∂p0

({
x,
y2

a

}
− {b, y}

)
= ∂p0

({
Y

Z
, b

})
∂p0

({
X

Z
,
Y 2

Z2

})
∂p0

({
X

Z
, a−1

})
=
a

b
∂p0

(({
X

Z
,
Y

Z

}))2

,
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and {
X

Z
,
Y

Z

}
= {X, Y }+ {X,Z−1}+ {Z−1, Y }+ {Z−1, Z−1}

= {Z,X}+ {Z−1, Y }+ {Z−1,−1}

modulo the kernel of ∂p0 . So

∂p0

({
X

Z
,
Y

Z

})
= −X

Y
.

Therefore

∂p0(r) =
aX

2

bY
2 = −1.

By definition we have ∂p0({−1, f}) = (−1)m and ∂p0(w) := cp0 = (−1)np0 , we
see

∂p0(w
′) = ∂p0(w) · ∂p0 ({−1, f}) · (∂p0(r))

l = (−1)np0+m+l = 1.

2. p 6= p0. Then if p corresponds to the degree 2 point given by X = 0, then

∂p(r) = ∂p({X/Z, Y 2/aZ2}) · ∂p({b, Y/Z})

= Y
2
/aZ

2
= 1.

If p corresponds to the degree 2 point given by Y = 0, then

∂p(r) = ∂p({Y 2/aZ2, X/Z}) · ∂p({Y/Z, b})
= (X/Z)2 · b = 1.

If p corresponds to any other point then r has no poles or zeroes and thus
∂p(r) = 1. Hence in any case r has no nontrivial residue at p, and By definition
{−1, f} has residue (−1)np . Hence

∂p(w
′) = (−1)np · (−1)np = 1.

Hence we see that ∂p(w′) = 1 for every p ∈ C, so w′ ∈ Ker ∂. Hence by the key exact
sequence of Theorem 10 we have w′ = sL, where s ∈ KM

2 k. So

vL = 2w′ − 2lr = 2sL − {al, b}L.

Now consider the diagram of fields

k E

L E(C)
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where E = k(
√
a) is a splitting field for (a, b)k. Write v′ = v − 2s + {al, b} ∈ KM

2 k.
Then

v′L = vL − 2sL + {al, b}L = 2sL − {al, b}L − 2sL + {al, b}L = 0.

Hence v′E(C) = 0, too. We now want to show that v′E = 0. To do this we observe that
the function field E(C) is isomorphic to the field of rational functions E(t) in one
variable. The irreducible polynomial t induces a discrete valuation on E(t), so t has
valuation ν(t) = 1. Hence the image v′E(C) of v

′
E in the inclusion of fields E ⊂ E(C)

satisfies
∂t({−t} · v′E(C)) = v′E

where ∂t is the residue homomorphism induced by the discrete valuation induced by t,
and so we see that the induced homomorphism KM

∗ (E)→ KM
∗ (E(C)) is injective. In

particular, we see that v′E = 0 as required. Now the norm map yields 0 = NE/F (v
′
E) =

2v′. Hence Theorem 11 gives v′ = {−1, d} where d ∈ k×. So in kM2 (k) we have
v = {al, b}+ {−1, d}, which reduces us back to the case n = 2. �

5.7 Surjectivity of the norm residue homomorphism

It remains to prove surjectivity. Let Q be a central simple algebra of order 2 in the
Brauer group. We proceed in two cases:

1. Assume k admits no nontrivial odd degree extensions. Then we proceed by
induction on the Schur index ind(Q) of Q, which is by definition the square
root of the dimension of the corresponding division algebra to Q given by Wed-
derburn’s theorem (which is a Brauer equivalence invariant, of course). Such
a square root is integral due to the proof of Proposition 11. In the base step
ind(Q) = 1, we have that Q is Brauer equivalent to zero, so clearly Q ∈ Imhk.
Now we proceed with the induction step. Suppose ind(Q) > 1. Then the un-
derlying division algebra D of Q is nontrivial, and so it contains a nontrivial
maximal subfieldM/k, which contains a nontrivial subfield K/k of degree equal
to a power of 2, since k has no odd degree extensions. This field is contained in
a Galois extension N/k, with the Galois group Gal(N/k) a 2-group. By the Ga-
lois correspondence, L corresponds to a subgroup H of G. Since 2-groups have
nontrivial centres, it follows that H is contained in a normal subgroup of index
2 in G. Applying the Galois correspondence again, we see that K/k contains
a quadratic subextension, and hence we may choose a quadratic extension L/k
such that the Schur index of QL := Q⊗k L is strictly less than the Schur index
of Q. Then by induction we have QL = hL(u), where u ∈ kM2 L. Hence

hk(NL/k(u)) = NL/k(hL(u)) = NL/k(QL) = 0.
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By the injectivity of the norm residue homomorphism we therefore haveNL/k(u) =
0, and by Lemma 43, it follows u = vL for some v ∈ kM2 k. Then since

hk(v)L = hL(vL) = hL(u) = QL,

we see that Q − hk(v) splits over a quadratic extension, and so denoting s =
ind(Q− hk(v)), it follows by [2] Corollary 98.5 that s divides [L : k] = 2, hence
either s = 2 or s = 1. Clearly if s = 1 then Q − hk(v) is split, and hence the
class of a quaternion algebra. If s = 2 then Q− hk(v) is Brauer-equivalent to a
four-dimensional central division algebra over k, so is a two-dimensional vector
space over L = k(

√
d) for some d ∈ k×, and is thus the class of a quaternion

algebra. In either case we have that Q − hk(v) is the class of a quaternion
algebra, and hence Q − hk(v) = hk(w) where w ∈ kM2 k is a pure symbol. So
Q = hk(w + v) ∈ Im(hk).

2. We now pass to the general case. Let k′ be the maximal subfield of the algebraic
closure k such that every finite subextension of k′ has odd degree. Such a field
k′ exists by the axiom of choice, and clearly there does not exist any nontrivial
extensions of k′ of odd degree. Then by the first part of the proof, in the Brauer
group we have

Qk′ = hk′(v
′) =

∑
Q′

for some v′ ∈ kM2 (k′) and classes of quaternion algebras Q′ defined over k′. But
observing that k′ is the union of all finite odd degree extensions L/k, we see
that we may choose a nontrivial odd degree extension L/k with each Q′ in the
sum above defined over L and thus with QL = hL(v) for some v ∈ kM2 L. Then
we have

Q = NL/k(QL) = NL/k(hL(v)) = hk(NL/k(v)) ∈ Imhk.

as required. �

Combining the proofs of injectivity and surjectivity, this completes the proof of The-
orem 9. �
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6 Conclusions & Further Study
The moral of this dissertation is that there can exist deep connections between os-
tensibly different areas of mathematics. The primary result of this dissertation, the
norm residue isomorphism theorem in degree two, is important as it allows one to
use the properties of Milnor K-theory to characterise and understand central simple
algebras of order 2 in the Brauer group. As a key example of this idea, we easily
deduce the following result, purely on the side of central simple algebras:

Corollary 1. Suppose D is a central division algebra such that D⊗kD is isomorphic
to a matrix algebra over k. Then there exists m,m′, n ∈ N and quaternion algebras
Q1, . . . , Qn defined over k such that there is an isomorphism

D ⊗k Mm(k) ∼= Q1 ⊗k Q2 ⊗k · · · ⊗k Qn ⊗k Mm′(k).

Proof. By hypothesis D ∈ Br2(k). Hence D is in the codomain of the norm residue
homomorphism, and by Theorem 9 we see D is the image of a sum of pure symbols,
i.e, Brauer equivalent to a product of quaternion algebras. The result follows.

The connection between quadratic forms and Milnor K-theory is also advanta-
geous, since one can understand quadratic forms in the Witt ring through the asso-
ciated graded ring with which Milnor K-theory gives a description by generators and
relations (although we did not prove Voevodsky’s innovative result that shows the
nth graded component of the Witt ring and the nth Milnor K-group agree for n > 2).

One may pursue a ubiquitous number of further topics to supplement the material
of this dissertation. The most natural choice would be to study the Chow groups of
algebraic geometry. Specifically, given a smooth variety X over a field k, there are
the Chow groups CHi(X) which give strong information about the subvarieties of X.
One may generalise these groups to the motivic cohomology groups Ha,b

µ (X,Z) of X,
which simultaneously capture both the Chow groups and Milnor K-theory. In fact,
Voevodsky’s proof of the Milnor conjecture makes extensive use of techniques from
motivic cohomology. So perhaps one could also go on to try and understand this
proof after learning the theory of motives. I studied many more mathematical ideas
that failed to make it into the final report as I felt they would distract the reader
from the core story that I wanted to tell. Nonetheless, you can see the influence of
larger overarching ideas throughout the text.

As a final closing remark, I’d like to again thank my supervisor, Alexander Vishik,
for the time and effort he sacrificed towards supervising my project. Without his
guidance I would surely be lost in the high levels of abstraction and sophistication
that some of the ideas I dealt with in this dissertation entailed. It was certainly
thanks to him that I was able to tackle such an ambitious project.
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