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Abstract

We survey the elementary definitions and results of commutative algebra and algebraic

geometry, leading up to a presentation of the Riemann-Roch theorem of curves in the

smooth case. We then explore some applications of this theorem to algebraic geometry

and beyond.
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0.1 Introduction

Algebraic geometry, the subject of this project, is the study of sets of zeros of polyno-

mials using algebraic techniques. The deep connection between algebra and geometry

has been well known throughout the history of mathematics. The ’classical’ study of

algebraic geometry starts as far back as the ancient Greeks, who knew the algebraic rela-

tions that defined the conic sections (though did not have the language to express them.)

Much further to the 17th century, Descartes developed his analytic coordinate system

which gave an immediate correspondence between arithmetic and geometry. Newton pro-

vided a rudimentary statement and proof of Bézout’s theorem in the Principia in 1687.

The Renaissance motivated an interest in projective geometry, and the synthetic study

of projective geometry started around this time. In the 19th century the subject found

rich development with Riemann’s insight and contributions. With Riemann’s inequal-

ity together with the work of his student Gustav Roch, they formulated the powerful

Riemann-Roch theorem that motivated much of the development of the subject into the

20th century and beyond. Grothendieck’s theory of schemes, the language in which mod-

ern algebraic geometry is phrased, can be thought of as the environment to best generalise

the Riemann-Roch theorem. The Italian school of algebraic geometry flourished in the

turn of the 20th century, and conducted much study into the birational geometry of alge-

braic surfaces. They successfully gave a classification of algebraic surfaces, similar to the

classification of algebraic curves by their genus g. References as well as a more detailed

account of the history of algebraic geometry can be found in [1].

The purpose of this work is to expose a reader to the methods and techniques of

algebraic geometry, by developing the theory of projective curves, divisors on them and

the Riemann-Roch theorem. The common theme throughout the work is that we can

better understand a geometric object by understanding the functions defined on that

object. The work will have fulfilled its purpose if a reader can walk away with a better

understanding of this idea than before.

For prerequisites, the reader is assumed to have a solid background in linear algebra,

and ideally a first course in abstract algebra; at least, the reader should understand the

notion of an abelian group. No prior knowledge of algebraic geometry is assumed.
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The first section is intended as a review of the ring theory and commutative algebra

that is used throughout the report. It also serves as a brief survey of the abstract algebra

that we see in most modern treatments of algebraic geometry. The material is standard

and some proofs have been omitted.

The second section introduces the theory of algebraic sets, projective space, function

fields and local rings. Certainly the crowning jewel of this section is the Nullstellensatz,

which provides a direct translation between radical ideals, an algebraic object, and alge-

braic sets, a geometric object. Some of the notions we introduce here are quite general

and are rarely summoned throughout the rest of the text, so this section serves more as

a taste at the flavour of modern algebraic geometry.

The third section is a detailed discussion of projective varieties in the case that they

are plane curves. We develop the machinery of intersection numbers and state and prove

Bézout’s theorem, a remarkable result which acts as the geometric analogue to the fun-

damental theorem of algebra.

The fourth section is a lengthy discussion of divisors on smooth curves. Divisors encode

the locations and orders of zeroes and poles of a function on a curve. The vector space

of all functions with zeros and poles constrained by the divisors are the object of interest

here, and the celebrated Riemann-Roch theorem, which we state and prove, provides a

precise relationship between the dimension of this space and some invariants of the curve.

The fifth and final section is essentially a showcase of the Riemann-Roch theorem. We

show that Riemann-Roch permits the famous Weierstrass form of an elliptic curve to be

deduced from the geometric definition as a genus one smooth projective curve. We also

discuss Clifford’s theorem.

Throughout the body of the text, I sometimes reference other sources for results and

proofs. These sources, as well as other books that I have used to build up my own

understanding of this subject, are found at the end of the paper. I particularly recommend

Fulton’s [2] book for the interested reader.

I’d like to thank my supervisor, for both the guidance and discussion they provided.
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“Algebra is the offer made by the devil to the mathematician. The devil

says: I will give you this powerful machine, it will answer any question you

like. All you need to do is give me your soul: give up geometry and you will

have this marvelous machine.“

- Michael Atiyah
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1 Elements of algebra

Throughout this paper, all rings are commutative with identity. We recall some standard

facts from ring theory. Any textbook on algebra should cover this section; a standard

reference is [3].

1.1 Rings

Definition 1.1. Let R be a set, and suppose + : R × R → R, called addition, and

· : R×R→ R, called multiplication, are binary operations on R such that:

1. 〈R,+〉 is an abelian group with identity 0,

2. For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c,

3. For all a, b, c ∈ R, a · (b · c) = (a · b) · c,

4. There exists 1 ∈ R such that 1 · a = a for all a ∈ R,

5. For all a, b ∈ R, a · b = b · a.

We then say that the triple (R,+, ·) is a ring, and denote this triple by R. Typically we

omit the · symbol when writing multiplication, writing a · b as ab.

Example 1.1. The following are rings:

1. The integers Z with the operations of integer addition and multiplication.

2. The integers modulo n for an integer n. Here the set is Z/nZ = {0, 1, ..., n − 1},

and the operations of addition and multiplication are carried out modulo n.

3. The set of real numbers, with real number addition and multiplication, forms a ring.

4. The set of polynomials R[X] in one variable, with coefficients in a ring R, forms a

ring. We add polynomials and multiply them in the natural way.

Definition 1.2. Let R be a ring. We call those elements a ∈ R for which there exists

b ∈ R such that ab = 1 units, and denote the set of units R×. This is a group with respect

to multiplication, so a multiplicative inverse of a unit is uniquely determined, justifying

the notation a−1 for the inverse of a under multiplication.
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Definition 1.3. Let R be a ring, and suppose that for all a, b ∈ R, ab = 0 implies a = 0

or b = 0. Then we say R is an integral domain. We call elements a, b for which a, b 6= 0

but ab = 0 zero divisors.

Definition 1.4. Suppose R is a ring such that R× = R \ {0}. We then call R a field.

Lemma 1.1. Every field F is an integral domain.

Proof. Let a, b ∈ F and suppose ab = 0. Without loss of generality, suppose a 6= 0. Then

b = a−1 · 0 = 0. So F is an integral domain.

Lemma 1.2. Every finite integral domain R is a field.

Proof. Write R = {a1, a2, ..., an}. Given any 0 6= a ∈ R, consider the set aR =

{aa1, aa2, ..., aan}. Now aai = aaj if and only if a(ai − aj) = 0. Since R is an inte-

gral domain, we conclude aai = aaj if and only if i = j. This implies the sets aR and R

are equal. Hence there exists some i ∈ N such that aai = 1. Hence a is a unit.

Remark. The converse does not hold in general when R is infinite. A counterexample is

the ring of integers Z.

Definition 1.5. Let R, S be rings, and suppose f : R→ S is a function such that:

1. For all a, b ∈ R, f(a+ b) = f(a) + f(b).

2. For all a, b ∈ R, f(ab) = f(a)f(b).

3. f(1R) = 1S,

where 1R ∈ R and 1S ∈ S are unity in R and S respectively, and addition/multiplication

on the right hand side is interpreted in the ring S. We then say f is a ring homomorphism.

A bijective homomorphism is called an isomorphism. We write that rings R and S are

isomorphic if there exists an isomorphism between them, and denote this relation by

R ∼= S.

Definition 1.6. We define the set ker f = {x ∈ R | f(x) = 0} and call it the kernel of f .

The set Im f = {y ∈ S | ∃x ∈ R : f(x) = y} is called the image of f .
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1.2 Ideals and quotients

Definition 1.7. Let R be a ring. Suppose I is a subset of R such that:

1. 〈I,+〉 is an additive subgroup of R. That is, for any a, b ∈ I, we have a− b ∈ I.

2. For all r ∈ R, a ∈ I, ra ∈ I. Equivalently rI = I for any r ∈ R.

We then call I an ideal of R.

Definition 1.8. We may define an ideal I by specifying a set S ⊆ R such that every

element of I may be written as a finite R−linear combination of elements of S, that is

I = {
∑n

i=1 aisi | ai ∈ R, si ∈ S, n ∈ N}. We denote I = (S) and call S a generating set

for I. An ideal I is finitely generated if it can be written I = (S) for some finite subset

S ⊆ R.

Definition 1.9. If there exists a ∈ R such that I = (a), that is I = aR = {ar | r ∈ R},

we say that I is a principal ideal. An integral domain where every ideal is principal is

called a principal ideal domain.

Example 1.2. The ring Z with normal addition and multiplication is a principal ideal

domain. Let I be an ideal of Z, and suppose I 6= (0). Let n be the smallest positive

integer in I. We claim I = (n). For let z ∈ I, and divide z by n, using the division

algorithm. We have

z = qn+ r

where 0 ≤ r < n are integers. Hence r = z − qn ∈ I. Since by assumption n is the

smallest positive integer in I, we must have that r = 0. So z = qn, so z ∈ (n).

Since any ideal of Z is principal, we have that Z is a principal ideal domain.

Remark. It is not difficult to adapt the above example to show additionally that any

proper ideal of Z must be generated by either 0 or p for some prime p.

Definition 1.10. Let a, b ∈ R. We say that a | b if there exists c ∈ R such that b = ac.

We have that (a) ⊆ (b) if and only if b | a. If a, b are such that a | b and b | a, we say that

a and b are associates.
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Lemma 1.3. Suppose R is an integral domain. Let a1, a2 ∈ R, and suppose (a1) = (a2),

equivalently, a1 | a2 and a2 | a1. Then a1 = ua2 for some u ∈ R×.

Proof. Since (a1) ⊆ (a2), we have a1 ∈ (a2), hence a1 = sa2 for some s ∈ R. Similarly we

have a2 = ta1 for some t ∈ R. Hence a1 = sta1, so a1(1 − st) = 0. Hence either a1 = 0,

or 1 = st, in which case s, t are units and we are done. In case a1 = 0, then a2 = 0 and

the claim follows.

Remark. The above lemma shows that associates should be thought of as ’the same’

element, up to a unit.

Lemma 1.4. A ring F is a field if and only if the only ideals of F are (0) and F .

Proof. Suppose F is a field. Let I ⊆ F be a non-trivial ideal of F . Then there exists

non-zero a ∈ I. Hence aa−1 = 1 ∈ I, so I = F .

For the converse, let 0 6= a ∈ F , and consider the ideal (a). Since this ideal is non-

trivial, we must have (a) = F . But then 1 ∈ (a), so there exists some b ∈ R such that

ab = 1. Hence a is a unit. So F is a field.

Corollary. Every field is a principal ideal domain.

Definition 1.11. Let I, J be ideals of a ring R. We may form:

1. The sum of ideals: I + J = {r + s | r ∈ I, s ∈ J},

2. The product of ideals: IJ = {
∑n

i=1 risi | ri ∈ I, si ∈ J, n ∈ N}, which is the ideal

generated by products rs for r ∈ I, s ∈ J ,

and the resulting sets are also ideals. We can extend these definitions by induction to

define
∑n

i=1 Ii,
∏n

i=1 Ii, I
n, etc.

Definition 1.12. Let I be an ideal of R. For any a ∈ R, we call the set a+ I = {a+ x |

x ∈ I} a coset of I. We call the set R/I = {a + I | a ∈ R} the quotient ring of R by I.

The induced ring operations (a+ I) + (b+ I) = (a+ b) + I and (a+ I)(b+ I) = (ab) + I

are well-defined, and do not depend on the choice of representatives a, b ∈ R ([4], Section

7.3). The additive identity of the quotient ring is 0+I = I and the multiplicative identity

is 1 + I.
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Lemma 1.5. Let f : R→ S be a ring homomorphism. The kernel ker f is an ideal of R.

Remark. The converse holds; given any ideal I of R, the natural projection h : R →

R/I, r 7→ r + I has kernel given by I.

Definition 1.13. Let k be a field. Let c : Z → k be the homomorphism defined by

c(n) = n · 1 = 1 + 1 + ...+ 1︸ ︷︷ ︸
n times

. Then, since Z is a principal ideal domain, ker c = (p) for

some integer p which is either 0 or prime. We say that p is the characteristic of the field

k.

1.3 Homomorphism theorems

Theorem 1.6. (Ring homomorphism theorem.) Let f : R→ S be a ring homomorphism.

Then R/ ker f ∼= Im f .

Proof. Denote I = ker f . Let φ : R/ ker f → Im f be such that φ(a+ I) = f(a). We must

check that this map does not depend on the choice of representative for a + I. Indeed,

suppose a + I = b + I. Then a − b ∈ ker f , so f(a − b) = f(a) − f(b) = 0. Hence

f(a) = f(b), so φ(a+ I) = φ(b+ I). Hence φ is a well-defined ring homomorphism.

We now show φ is bijective. Clearly φ is surjective. And φ is injective, for a ∈

kerφ ⇐⇒ φ(a+ I) = f(a) = 0 ⇐⇒ a ∈ ker f ⇐⇒ a+ I = I.

Example 1.3. Let f : Z → Z/nZ be defined by f(z) = z, where z is the residue of z

modulo n. Then ker f = {z ∈ Z | z = 0} = {. . . ,−2n,−n, 0, n, 2n, . . . } = nZ. Hence

Z/nZ really is the quotient of Z by nZ.

Theorem 1.7. (Correspondence theorem.) Let R be a ring, I ⊆ R an ideal of R. There

exists a bijective correspondence between ideals of R/I and ideals of R containing I:

{ideals J ⊆ R | I ⊆ J} one-to-one←−−−−−→ {ideals of R/I},

J 7→ J/I,

h−1(K)←[ K,

where h : R→ R/I is the natural projection.
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Proof. Let J be an ideal of R containing I. It is easy to verify that the quotient J/I is an

ideal of R/I. Conversely, given an ideal K of R/I, the set h−1(K) ⊆ R is an ideal of R

since it is a preimage of an ideal under a ring homomorphism. Since 0 + I ∈ K, it follows

that I ⊆ h−1(K).

The maps are inverse to each other: We have that h−1(J/I) = J and h−1(K)/I =

K.

1.4 Maximal and prime ideals

Definition 1.14. Let R be a ring, and p an ideal of R. If ab ∈ p means either a ∈ p or

b ∈ p for any a, b ∈ R, we say that p is a prime ideal of R. Let m be an ideal of R. If

there does not exist a proper ideal I ( R such that m ( I, we say that m is a maximal

ideal.

Definition 1.15. Assuming Zorn’s lemma, it can be shown that every ring has at least

one maximal ideal ([4], Chapter 7, Proposition 11.) We say that a ring R is local if it has

exactly one maximal ideal.

Lemma 1.8. An ideal p ⊆ R is prime if and only if R/p is an integral domain.

Proof. Suppose p is prime. Suppose (a+p)(b+p) = p, that is, (ab) +p = p. Then ab ∈ p,

hence either a ∈ p or b ∈ p, from which either a + p = p or b + p = p. We conclude R/p

is an integral domain.

Conversely, suppose R/p is an integral domain. Let a, b ∈ R and suppose ab ∈ p.

Then (ab) + p = (a+ p)(b+ p) = p. Since R/p is an integral domain, either a+ p = p or

b+ p = p. It follows either a ∈ p or b ∈ p. Hence p is prime.

Lemma 1.9. An ideal m ( R is maximal if and only if R/m is a field.

Proof. Ideals of R/m are in one-to-one correspondence with ideals of R containing m

(Theorem 1.7.) But if m is maximal, the only ideals containing m are m and R. Hence

the only proper ideal of R/m is the trivial ideal, and hence R/m is a field. The converse

follows similarly.

Lemma 1.10. Every maximal ideal is prime.
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Proof. Suppose m is a maximal ideal of the ring R. By Lemma 1.9, the ring R/m is a

field. By Lemma 1.1, R/m is an integral domain. By Lemma 1.8, m is prime.

Definition 1.16. Let I ⊆ R be an ideal. We define
√
I = {r ∈ R | ∃n ∈ N : rn ∈ I},

and call it the radical of I. If I =
√
I, we say that I is a radical ideal.

Lemma 1.11. Prime ideals are radical.

Proof. Suppose I is prime. Obviously we have the inclusion I ⊆
√
I. Now suppose

x ∈
√
I. Then there exists n ∈ N such that xn = (xn−1)x ∈ I. By the primality of I,

either x ∈ I (in which case we are done), or xn−1 ∈ I. Suppose the latter. Then by

writing xn−1 = (xn−2)x ∈ I, we may proceed as before to get either x ∈ I (in which case

we are done), or xn−2 ∈ I. By induction, we conclude x ∈ I.

1.5 Polynomial rings

Definition 1.17. Let R be a ring. Define R[x] = {anxn + an−1x
n−1 + ... + a1x + a0 |

an, an−1, ..., a1, a0 ∈ R} Then R[x] becomes a ring under the natural polynomial addition

and multiplication. We call R[x] the ring of polynomials in x.

Note. We inductively define R[x, y] = (R[x])[y], so it makes sense to define the polynomial

ring R[x1, ..., xn].

Example 1.4. Let S be a ring such that R ⊆ S. We may evaluate any f ∈ R[x] at any

s ∈ S by replacing x with s and performing multiplication/addition in the ring S. Hence

we have a homomorphism

evs : R[x]→ S, f 7→ f(s)

with kernel ker evs = {f ∈ R[x] | f(s) = 0}.

Definition 1.18. Let k be a field; we say that k is algebraically closed if every non-

constant polynomial f ∈ k[x] has a root in k; that is there exists a ∈ k such that

f(a) = 0. It then follows that every polynomial f ∈ k[x] can be written

f(x) = u
n∏
i=1

(x− ai)

where u ∈ k, u 6= 0 and the ai are the roots of f , possibly repeated.
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Definition 1.19. Let F ∈ k[x1, ..., xn]. We say that F is homogeneous if every monomial

forming F has the same degree.

Example 1.5. F = X2Y − Z3 + XY Z is homogeneous, but G = X3 − Y is not homo-

geneous.

Definition 1.20. Let f ∈ k[X, Y ]. Then we define the homogenisation of f to be the

homogeneous polynomial in k[X, Y, Z] obtained by substituting X 7→ X/Z, Y 7→ Y/Z

and multiplying through by a large enough factor of Z to clear denominators. Conversely,

given a homogeneous polynomial F in k[X, Y, Z] we obtain a polynomial in k[X, Y ] by

setting Z to 1. We write f = F∗ = F (X, Y, 1) and call f the dehomogenisation of F (with

respect to Z).

1.6 Noetherian rings

Definition 1.21. Let R be a ring. We say that R is Noetherian if it satisfies any of the

following equivalent properties ([3], Proposition 6.1):

1. For any ascending chain I1 ⊆ I2 ⊆ I3 ⊆ ... of ideals of R, there exists some n ∈ N

such that Ii = Ii+1 for any i ≥ n.

2. Every ideal of R is finitely generated.

3. Given any non-empty collection M of ideals of R, there exists a maximal element

with respect to inclusion. That is, there exists I ∈ M such that for any J ∈ M

with J 6= I we have I 6⊂ J .

Remark. Principal ideal domains are Noetherian, because each ideal is principal and hence

finitely generated.

Theorem 1.12. (Hilbert’s basis theorem.) If R is Noetherian, then the polynomial ring

R[x1, ..., xn] is Noetherian.

Proof. We show that any ideal of R[x] is finitely generated, from which the theorem

follows by induction. Let I be an ideal of R[x]. Define for each n ∈ N≥0 the ideal

15



Jn = {a ∈ R | there exists a polynomial axn + an−1x
n−1 + ... + a0 ∈ I, an−1, ..., a0 ∈ R}.

Then clearly Jn ⊆ Jn+1. Hence we obtain an increasing sequence of ideals

J0 ⊆ J1 ⊆ J2 ⊆ J3 ⊆ ...

of R, which must stabilise by the Noetherian condition. So there exists an integer k ∈ N≥0

such that Ji = Ji+1 for all i ≥ k. Let {c(n)j | 1 ≤ j ≤ ln} be a set of generators for Jn, which

is possible to be chosen as finite again due to the Noetherian condition. Next, for each

c
(n)
j choose a polynomial f

(n)
j (x) = c

(n)
j xn + an−1x

n−1 + ...+ a0 ∈ I where an−1, ..., a0 ∈ R.

We now show that {f (n)
j (x) | 0 ≤ n ≤ k, 1 ≤ j ≤ ln} is a generating set for I. Let

f(x) = axm + am−1x
m−1 + ...+ a0 ∈ I be arbitrary. If m ≥ k then c

(m)
j ∈ Jm = Jk and so

there exists aj ∈ R such that

a =

lk∑
j=1

ajc
(k)
j

Hence

f(x)−
lk∑
j=1

ajf
(k)
j xm−k

is a polynomial of degree strictly less than m. If m < k then we may write

a =
lm∑
j=1

ajc
(m)
j

and hence

f(x)−
lm∑
j=1

ajf
(m)
j

has smaller degree than f(x). Since we may always reduce the degree of f by subtracting

appropriate R[x]−linear combinations of the f
(n)
j , we conclude by induction that f is an

R[x]−linear combination of the f
(n)
j , and hence I is finitely generated.

The Noetherian property passes to quotients, too:

Theorem 1.13. Let R be Noetherian, and I an ideal of R. Then R/I is Noetherian.

Proof. Let

J0 ( J1 ( J2 ( ...

be an increasing sequence of ideals of R/I. By Theorem 1.7, this corresponds to an

increasing sequence

I ⊆ I0 ( I1 ( I2 ( ...
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of ideals of R. This sequence must terminate, since R is Noetherian. So the sequence in

R/I must terminate as well.

1.7 Localisations

Definition 1.22. Let R be a ring. Suppose S ⊆ R is such that:

1. 0 /∈ S.

2. 1 ∈ S.

3. For any a, b ∈ S, ab ∈ S.

We then say that S is a multiplicatively closed subset of R.

Definition 1.23. Let S be a multiplicatively closed subset of R. We define the ring

S−1R = {a/b | a ∈ R, b ∈ S} with addition a/b + c/d = (ad + bc)/bd and multiplication

(a/b)(c/d) = ac/bd. We call it the ring of fractions of R with respect to S. Two fractions

a/b and c/d are equal if and only if there exists s ∈ S such that (ad− bc)s = 0.

Remark. If R is an integral domain, then S = R \ {0} is a multiplicatively closed subset.

The ring S−1R is then called the field of fractions of R. Here a/b = c/d if and only if

ad = bc. In this case the map R→ S−1R, f 7→ f/1 is an injection. Hence we may regard

R as a subring of its field of fractions.

Example 1.6. The rational numbers Q can be constructed as the field of fractions of the

integers Z.

Lemma 1.14. If p ⊆ R is a prime ideal, the set S = R \ p is a multiplicatively closed

subset of R.

Definition 1.24. Let p be a prime ideal of R. We call the ring of fractions of R with

respect to R \ p the localisation of R at p. We denote it by Rp.

1.8 Discrete valuation rings

Definition 1.25. A discrete valuation ring (DVR) is a local principal ideal domain which

is not a field.
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Definition 1.26. Let R be a DVR, and suppose the maximal ideal m = (t). We call t a

uniformising parameter for R.

Remark. The maximal ideal m consists of all non-units of R.

Lemma 1.15. Let R be a discrete valuation ring, and let t1, t2 be uniformising parameters

for R. Then t1 = ut2 where u ∈ R×.

Proof. Let m be the maximal ideal of R. We have m = (t1) = (t2). Now R is an integral

domain, hence we may apply Lemma 1.3 to get t1 = ut2 for some u ∈ R×.

Theorem 1.16. Suppose R is a DVR and t a uniformising parameter for R. Then any

x ∈ R with x 6= 0 can be uniquely written in the form x = utn where u ∈ R× and n ∈ N≥0.

Proof. Existence. If x is a unit clearly u = x, n = 0 is a representation of x in the required

shape, so suppose that x is not a unit. Then x ∈ m = (t), so there exists r1 ∈ R such

that x = r1t. Now either r1 is a unit, in which case we are done, or r1 is not a unit, so

r1 ∈ m and hence we may write r1 = r2t for some r2 ∈ R. Continuing in this fashion, we

deduce that there must exist n ∈ N such that rn ∈ R×. Otherwise, we would induce an

ascending chain of ideals

(r1) ( (r2) ( (r3) ( ...

which would not terminate, contradicting the Noetherian property of R. Hence x = r1t =

r2t
2 = ... = rnt

n with rn ∈ R× and we are done.

Uniqueness. Suppose x = utn = vtm are two representations of x, where u, v ∈ R×,

n,m ∈ N≥0, and suppose without loss of generality that m ≥ n. Then tn(u− vtm−n) = 0,

from which we deduce uv−1 = tm−n is a unit. Hence m − n = 0, so m = n, and finally

u = v.

Definition 1.27. Given any x = utn in a DVR, we call n the order of x, and it is does

not depend on the choice of uniformising parameter (check this.)

1.9 Modules over rings

Modules provide a unifying algebraic structure to discuss abelian groups, rings and vector

spaces.
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Definition 1.28. Let R be a ring and M an abelian group. Suppose · : R → M is a

map, called scalar multiplication, such that for all r, s ∈ R, m,n ∈M :

1. r · (m+ n) = r ·m+ r · n.

2. (r + s) ·m = r ·m+ s ·m.

3. (rs) ·m = r · (s ·m).

4. 1 · x = x.

Then (M,R, ·) is called a module over R. We say that M is an R−module. We typically

omit the · notation.

Example 1.7. 1. Any abelian group G may be considered as a Z−module by defining

the scalar multiplication:

n · g =


g + ...+ g︸ ︷︷ ︸

n times

, n ≥ 0

−g − ...− g︸ ︷︷ ︸
n times

, n < 0

2. A vector space V over a field k is a k−module.

3. A ring is a module over itself.

Remark. One should think of an R−module as a vector space where we relax the condition

that R is a field, into merely being a ring.

Definition 1.29. Let M be an R−module. Suppose N is a subgroup of M such that N

is closed under scalar multiplication from R. We then say N is an R-submodule of M .

Definition 1.30. Let M be an R−module and N an R−submodule of M . We define the

quotient module M/N as the set of cosets {m + N | m ∈ M} with addition (m + N) +

(m′ +N) = (m+m′) +N and scalar multiplication a(m+N) = (am) +N .

Remark. The homomorphism and correspondence theorems from the section on rings pass

over to modules in the same way, with rings substituted for R−modules and ideals for

R−submodules.

19



1.10 Exact sequences

Let V1, V2, V3 be vector spaces over a field k, and φ, ψ linear maps over k. We say that

the sequence

V1 V2 V3
φ ψ

of k−linear maps is exact if Imφ = kerψ. Similarly the sequence

V0 V1 · · · Vn−1 Vn
φ1 φ2 φn−1 φn

is called exact if Imφi = kerφi+1 for all 1 ≤ i < n.

Lemma 1.17. The sequence

0 V1 V2 V3 0
φ ψ

is exact if and only if φ is injective and ψ is surjective.

Remark. A sequence of the above form is called a short exact sequence.

Example 1.8. Let V be a vector space over k, W a subspace of V and consider the

sequence

0 W V V/W 0h

where h is the natural projection onto V/W , and the map W → V is inclusion. This

sequence is exact. Conversely, given any exact sequence

0 U V W 0

of vector spaces, we may regard U as a subspace of V . Hence U is the kernel of the map

φ : V → W , and therefore W = V/U .

Remark. By virtue of the above example, a heuristic for thinking about short exact se-

quences is

0 subobject primary object quotient object 0.

Lemma 1.18. Let V1, V2, V3 be finite-dimensional vector spaces, and suppose the sequence

0 V1 V2 V3 0
φ ψ

is exact. Then dimV1 + dimV3 = dimV2.
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Proof. Since we have a short exact sequence, we see that dim kerφ = 0 and dim Imψ =

dimV3. By the rank-nullity theorem of linear algebra, dim kerφ + dim Imφ = dimV1,

dim kerψ+dim Imψ = dimV2.Applying the equalities due to exactness, we see dim Imφ =

dimV1, dim kerψ + dimV3 = dimV2. Now Imφ = kerψ, hence dimV1 + dimV3 = dimV2.

A similar proof of the above yields the following:

Lemma 1.19. Let V1, V2, V3, ..., Vn be finite-dimensional vector spaces, and suppose the

sequence

0 V1 V2 ... Vn−1 Vn 0

is exact. Then
∑n

i=1(−1)i+1Vi = 0.
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2 Elements of algebraic geometry

Throughout, we assume k is an algebraically closed field.

2.1 Affine space

Definition 2.1. We denote An = {(x1, ..., xn) | xi ∈ k}. An algebraic set is a subset

X ⊆ An whose elements are given by the zero set of an arbitrary set of polynomials

S ⊆ k[x1, ..., xn]. We denote this zero set by V(S).

Figure 1: An algebraic set in A3.

Definition 2.2. We say an algebraic set X is irreducible if whenever X1, X2 are algebraic

sets such that X = X1 ∪ X2, then either X1 = X or X2 = X. We call an irreducible

algebraic set an affine algebraic variety.

Definition 2.3. Let X be an arbitrary subset of An. We write

I(X) = {f ∈ k[x1, ..., xn] | f(a1, ..., an) = 0 for all (a1, ..., an) ∈ X}

and call it the ideal of X.

Lemma 2.1. I(X) is an ideal of the polynomial ring k[x1, ..., xn].

Lemma 2.2. An algebraic set X is irreducible (equivalently an affine algebraic variety)

if and only if the ideal I(X) is prime.
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Proof. Suppose X is irreducible. Let f, g ∈ k[x1, ..., xn], and suppose fg ∈ I(X). Then

(fg) ⊆ I(X). Hence we have the inclusions X = V(I(X)) ⊆ V(fg) = V(f) ∪ V(g).

Therefore, we have that X = (V(f) ∩ X) ∪ (V(g) ∩ X). The irreducibility of X implies

without loss of generality that X = V(f) ∩X, so X ⊆ V(f). We conclude f ∈ I(X).

Conversely, suppose I(X) is prime. Suppose X = X1 ∪ X2. Then we have that

I(X) = I(X1) ∩ I(X2). Now, if I(X) = I(X1) then X1 = X, and then we are done.

Otherwise, there exists f ∈ I(X1)\I(X) and for any g ∈ I(X2), fg ∈ I(X1)∩I(X2) = I(X),

from which we conclude g ∈ I(X) by the primality of I(X). Hence I(X2) ⊆ I(X) ⊆ I(X2),

so I(X) = I(X2). Hence X = X2. We conclude X is irreducible.

Lemma 2.3. Let X, Y ⊆ An, I, J ⊆ k[x1, ..., xn] be sets. The maps I and V reverse

inclusions:

1. If X ⊆ Y then I(Y ) ⊆ I(X).

2. If I ⊆ J then V(J) ⊆ V(I).

Proof. Suppose f ∈ I(Y ). Then f is a polynomial which vanishes on all of Y , and hence

all of X, since X ⊆ Y . Hence f ∈ I(X).

Suppose x = (a1, ..., an) ∈ V(J). Then f(x) = 0 for every f ∈ J , and hence for every

f ∈ I, since I ⊆ J . Hence x ∈ V(I).

Lemma 2.4. We have the follow inclusions and equalities (Galois correspondence!):

1. X = V(I(X)).

2. I ⊆ I(V(I)).

Definition 2.4. We define a topology on An, whose closed sets are the algebraic sets.

That is, a set X ⊆ An is closed if and only if it may be written X = V(I) for some ideal

I ⊆ k[x1, ..., xn]. We call this topology the Zariski topology. Subvarieties of An get the

induced subspace topology.

Definition 2.5. For each polynomial f ∈ k[x1, ..., xn] we obtain a map f : An → k by eval-

uating f at points of An. Suppose X ⊆ An. The restriction of f to X induces a polynomial

map f |X : X → k. Let π : k[x1, ..., xn]→ k[x1, ..., xn] |X , f 7→ f |X . Then ker(π) = I(X).
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Hence by the ring homomorphism theorem, k[x1, ..., xn] |X∼= k[x1, ..., xn]/I(X). We denote

this ring by Γ(X) and call it the coordinate ring of X.

Theorem 2.5. (Weak Nullstellensatz.) Let I ⊆ k[x1, ..., xn] be an ideal and suppose

V(I) = ∅. Then I = k[x1, ..., xn].

Proof. A proof is found in ([2], 1.7.)

Theorem 2.6. (Nullstellensatz.) Let I ⊆ k[x1, ..., xn] be an ideal. Then
√
I = I(V(I)),

where
√
I is the radical of I.

Proof. We show the inclusion
√
I ⊆ I(V(I)) first: Let f ∈

√
I. Then there exists m ∈ N

such that fm ∈ I. Hence fm ∈ I(V(I)) by Lemma 2.4. Since the zero sets of fm and f

are equal, we have f ∈ I(V(I)).

Now we show the reverse inclusion; the method is due to Rabinowitsch. Since k[x1, ..., xn]

is Noetherian (Theorem 1.12), there exists f1, ..., fs ∈ k[x1, ..., xn] such that I = (f1, ..., fs).

Let f ∈ I(V(I)), and define the ideal

I ′ = (f1, ..., fs, 1− yf) ⊆ k[x1, ..., xn, y].

We want to show V(I ′) is empty. To this end, suppose for contradiction that V(I ′) 6=

∅; hence choose (a1, ..., an, an+1) ∈ V(I ′). We have (a1, ..., an) ∈ V(I). Since f ∈ I,

f(a1, ..., an) = 0. Hence (1− yf)(a1, ..., an, an+1) = 1− an+1f(a1, ..., an) = 1− 0 = 1 6= 0,

a contradiction. So V(I ′) = ∅, hence by Theorem 2.5, I ′ = k[x1, ..., xn, y]. In particular

1 ∈ I ′, so there exists h1, ..., hs, p ∈ k[x1, ..., xn, y] such that

1 = h1f1 + ...+ hsfs + p(1− yf).

Now set y = 1/f(x1, ..., xn). We obtain

1 = h1(x1, ..., xn, 1/f)f1 + ...+ hs(x1, ..., xn, 1/f)fs

and hence by multiplying through by a high enough power fm to clear the denominators

yields

fm = h′1(x1, ..., xn)f1 + ...+ h′s(x1, ..., xn)fs

and hence fm ∈ (f1, ..., fs). So f ∈
√
I.
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Corollary. There are bijective order-reversing correspondences between:

1. Algebraic sets in kn and radical ideals in k[x1, ..., xn].

2. Affine algebraic varieties in kn and prime ideals in k[x1, ..., xn].

Theorem 2.7. Every algebraic set is a finite union of affine algebraic varieties.

Proof. Let X be an algebraic set. If X is irreducible, we are done. Otherwise, there exists

algebraic sets X1, X
′
1 ( X with X = X1 ∪X ′1. If both X1 and X ′1 are irreducible then we

are done, otherwise without loss of generality we may similarly write X1 = X2 ∪X ′2 with

X2, X
′
2 ( X1. Continuing in this fashion we obtain a strictly decreasing chain of algebraic

sets

X ) X1 ) X2 ) ...

which by the Nullstellensatz (Theorem 2.6) corresponds to a strictly increasing chain of

ideals I ( I1 ( I2 ( ... of k[x1, ..., xn], which must terminate by the Noetherian property.

Hence the chain of algebraic sets must terminate too. Hence we may write X as a finite

union of irreducible algebraic sets.

2.2 Projective space

Definition 2.6. Let k be a field. Let Pn(k) be the set of all 1−dimensional subspaces of

kn+1. We call Pn(k) projective space, calling P1(k) the projective line, P2(k) the projective

plane, etc.

Remark. Equivalently, one can define projective space Pn(k) as the quotient of kn+1 by the

equivalence relation (a0, a1, ..., an) ∼ (b0, b1, ..., bn) if and only if there exists λ ∈ k× such

that (a0, a1, ..., an) = (λb0, λb1, ..., λbn). We denote the equivalence class of (a0, a1, ..., an)

by [a0 : a1 : ... : an]. These are projective coordinates.

Definition 2.7. For each 0 ≤ i ≤ n, let Ui = {[a0 : a1 : ... : an] ∈ Pn | ai 6= 0}. Then

Pn =
⋃n
i=0 Ui. We call each Ui an affine patch of Pn.

Note. Let x ∈ Uj. Then we may write x = [a0/aj : a1/aj : ... : 1 : ... : an/aj] (the jth coor-

dinate is 1), and so for each x ∈ Uj we choose the representative (a0/aj, a1/aj, ..., 1, ..., an/aj).
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This representative is called the local affine coordinates for x. With this convention

adopted we then have

Uj = {(a0, a1, ..., 1, ..., an) | a0, a1, ..., an ∈ k} ∼= An

Pn \ Uj = {[a0, a1, ..., 0, ..., an] | a0, a1, ..., an ∈ k} ∼= Pn−1.

Hence we may write Pn = An t Pn−1. The Pn−1 in this decomposition is called the

hyperplane at infnity.

Figure 2: An example of an affine patch of P2 by considering the intersection of lines

through the origin in k3 with a fixed plane which does not pass through the origin.

We identify each line with its intersection point on the plane, and this sets up a one-

to-one correspondence of A2 with those lines. The only lines in k3 which fail to get a

representative are the lines which are parallel to the plane. From the plane’s point of

view, these lines correspond to ’points at infinity’.

Remark. Similar to the affine case, we may define projective algebraic sets and the ideal of

a projective algebraic set, but for this to be well-defined, we need to restrict our defining

polynomials to be homogeneous.

Definition 2.8. We say that X ⊆ Pn is a projective algebraic set if X = {x ∈ Pn | f(x) =

0 for all x ∈ S}, where S ⊆ k[x0, ..., xn] is a set of homogeneous polynomials of degree d.

We write X = V(S).
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Definition 2.9. Let X ⊆ Pn. We define I(X) to be the set of all homogeneous polyno-

mials in k[x0, ..., xn] which vanish at all x ∈ X. It is an ideal, called the (projective) ideal

of X.

Definition 2.10. Let X ⊆ An be an affine algebraic variety. We may consider X as a

subset of Pn by the map (x1, ..., xn) 7→ [1 : x1 : ... : xn]. The projective closure X∗ of

X is defined to be the closure (in the topological sense) of X in Pn. If X = V(I), then

X∗ = V(I∗), where I∗ is the ideal generated by all homogenisations of elements of I. If

I = (F ) then I∗ = (F ∗) where F ∗ is the homogenisation of F ([2], Chapter 4.)

Example 2.1. Let X = V(x2 − y) ⊂ An. Then X∗ = V(X2 − Y Z) ⊂ P2. The points at

infinity of X2 − Y Z may be obtained by setting Z = 0. Then X = 0, so [0 : 1 : 0] is the

only point at infinity. Hence we can write

X∗ = V(x2 − y) t {[0 : 1 : 0]}

and so we can view the projective closure as adding in points at infinity, in line with

Definition 2.7.

Definition 2.11. Suppose T : kn+1 → kn+1 is a linear map that takes lines through the

origin to lines through the origin. Then T determines a map Pn → Pn, which we call a

projective change of coordinates, or a projective transformation.

2.3 Functions on varieties

Definition 2.12. Let X ⊆ An be an algebraic set. Recall the coordinate ring Γ(X) as in

Definition 2.5. We call elements of Γ(X) regular functions on X.

Definition 2.13. LetX ⊆ An, Y ⊆ Am be affine algebraic sets. A regular map f : X → Y

is a map which may be written f = (f1, ..., fm) where each fi ∈ Γ(X). We say X and Y

are isomorphic if there exists bijective regular f : X → Y with regular inverse.

Remark. If we restrict the fi to be linear polynomials, and suppose f is bijective, then

we say that f determines an affine change of coordinates, or affine transformation of

X (equivalently, Y .) Every affine transformation consists of a translation and a linear
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transformation. The set of all affine transformations with function composition forms a

group structure.

Definition 2.14. Let X be an affine algebraic variety. Since X is irreducible, I(X) is

prime, so Γ(X) is an integral domain (Lemma 1.8.) Denote by k(X) the field of fractions

of Γ(X). We call k(X) the function field of X. Elements of k(X) are called rational

functions on X.

Definition 2.15. Let X be an affine algebraic variety, p ∈ X. Define the ring Op(X) =

{f/g | f, g ∈ Γ(X), g(p) 6= 0}, with natural addition and multiplication inherited from

k(X). We call Op(X) the local ring of X at p.

Remark. Let p = (p1, p2, . . . , pn). Then Op(X) is the localisation of Γ(X) at the maximal

ideal (x1 − p1)(x2 − p2) . . . (xn − pn).

Definition 2.16. If X is a projective variety and p ∈ X, we define Op(X) as Op(X ∩U),

where U is an affine chart containing p. This does not depend on the choice of affine chart;

for two choices of affine charts, the corresponding local rings are naturally isomorphic ([2],

5.1).

Definition 2.17. Let φ ∈ k(X). We say that φ is regular at p ∈ X if φ ∈ Op(X).

Theorem 2.8. Let X be an affine algebraic variety. A function φ ∈ k(X) is a regular

function if and only if it is regular at every p ∈ X.

Proof. This amounts to showing that
⋂
p∈X Op(X) = Γ(X). Clearly Γ(X) ⊆

⋂
p∈X Op(X),

since Γ(X) is an integral domain. Now let φ ∈
⋂
p∈X Op(X), and suppose for a contra-

diction that φ /∈ Γ(X). Define the ideal Iφ = {f ∈ Γ(X) | fφ ∈ Γ(X)}. Then Iφ is

proper, since 1 /∈ Iφ. Hence there must be a maximal ideal m containing Iφ. Let q be

the corresponding point in X (Nullstellensatz), so φ ∈ Oq(X). Now there must exist

g ∈ Γ(X) with g(q) 6= 0 and gφ ∈ Γ(X). Hence g /∈ m, g ∈ Iφ. But this contradicts

Iφ ⊆ m.

We need a theorem for a result in the next section, but its proof is found in [2], 2.10,

Corollary 2.
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Theorem 2.9. Let I be an ideal of k[x1, ..., xn]. If V(I) = P , then k[x1, ..., xn]/I is

isomorphic to OP (An)/IOp(An).
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3 Projective plane curves

The primary reference for this section is [2], Chapters 3 and 5.

3.1 Multiplicities and local rings

Definition 3.1. Let F ∈ k[X, Y, Z] be a homogeneous polynomial. We say V(F ) is a

projective plane curve. A projective plane curve of degree 1 is called a line, of degree 2 is

called a conic, of degree 3 a cubic, of degree 4 a quartic, etc.

Note. Unless otherwise stated, we assume F is irreducible. Hence we will write OP (F )

instead of OP (V(F )) and so on. We will frequently swap notation for curves and polyno-

mials, writing F instead of C = V(F ) and vice versa.

Definition 3.2. Let C be a projective plane curve, and C = V(F ), where F ∈ k[X, Y, Z].

Let p ∈ C. We say that C is nonsingular or simple at p if none of the partial derivatives

∂F
∂X
, ∂F
∂Y
, ∂F
∂Z

vanish at p. Otherwise p is a singular or multiple point. The curve C is smooth

if every point in C is simple.

Definition 3.3. Let C = V(F ) be a projective plane curve, and suppose F has degree

n. Let p ∈ C, and suppose U is an affine chart containing p, such that p 7→ (0, 0) in this

chart. Let f be the dehomogenisation of F with respect to this coordinate chart. Write

f = fm + fm+1 + ...+ fn

where each fi is homogeneous of degree i, and m ≤ n. We call the integer m the mul-

tiplicity of F at p, and write m = mp(C). The form fm can be factored into irreducible

components as

fm =
∏

Lrii

where the Li are distinct lines, ri their multiplicities. We call the Li the tangent lines to

C at p, with the ri being their tangent multiplicities.

Remark. Suppose without loss of generality that p is contained in Uz, and p 7→ (a, b) in

this chart. Then to find the multiplicity of F and the tangents lines at p, we apply the

above definition to the polynomial

g = f(x+ a, y + b).
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Theorem 3.1. Let F be a smooth projective plane curve. Then for any p ∈ V(F ), Op(F )

is a discrete valuation ring. As a uniformising parameter, one can choose the image in

Γ(F ) of any line L = aX + bY + cZ which is not tangent to F at p.

Proof. Pass over to an affine chart containing p and then use [2], Chapter 3, page 34. It

does not depend on the choice of affine chart by the usual considerations.

Remark. More is true; Op(F ) is a DVR if and only if p is simple, as the referenced result

above shows.

Definition 3.4. Let C be a projective plane curve, and suppose p ∈ C is a simple point.

Let f ∈ Op(C), and t a uniformising parameter for Op(C). Then we may write f = utn

for some unique u ∈ Op(C)× and n ∈ Z. We define ordp(C) = n. By our results in

Section 1, this does not depend on the choice of t.

We now state some properties of the order function. The proofs are easy and are left

as a useful exercise:

Lemma 3.2. The order function satisfies the following properties for all non-zero f, g ∈

k(C):

1. ordp(fg) = ordp(f) + ordp(g).

2. ordp(f) ≥ 0 ⇐⇒ f ∈ Op(C).

3. ordp(f) = 0 ⇐⇒ f ∈ Op(C)×.

Furthermore, if ordp(f) ≥ 0 for every p ∈ C, then equivalently ordp(f) = 0 for every

p ∈ C and hence f ∈ k.

The multiplicity of a curve at a point depends only on the local ring at the point:

Theorem 3.3. Let C = V(F ) be a projective plane curve, p ∈ C. Let O = Op(C) be the

local ring at p with maximal ideal m. Then for all sufficiently large n,

mp(C) = dimk(m
n/mn+1).

Remark. Before we prove the theorem, we will work out an example of calculating a

dimension of a polynomial ring. The result is used in the proof.
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Example 3.1. Let I = (x, y) ⊂ k[x, y], and n ∈ N. Let us calculate the dimension

dimk(k[x, y]/In). Elements of k[x, y] whose residues are 0 are finite sums of monomials of

the form xiyj, where i + j ≥ n. Hence as basis elements we can choose all monomials of

the form xiyj where i+ j < n, of which there are n(n+ 1)/2 such monomials in k[x, y].

Indeed, given f ∈ k[x, y], write f =
∑

i,j aijx
iyj. Then taking In−residues, we see all

the monomials of the form xiyj where i+j ≥ n are killed by In, so the claimed basis spans

k[x, y]/In. And we have linear independence, for suppose there exists a linear relation∑
i,j,i+j≤n cijx

iyj = 0. Then the polynomial f(x, y) =
∑

i,j,i+j≤n cijx
iyj is identically zero,

and so must be the zero polynomial, i.e., cij = 0 for all i, j.

Proof. Let us pass over to an affine chart containing p. Suppose without loss of generality

that this chart is Uz and that p = (0, 0) in this chart. Then we may write mn = InO,

where I = (x, y) is an ideal of k[x, y]. Now V(In) = {p}. Hence by Theorem 2.9,

k[x, y]/(In, F ) ∼= Op(A2)/(In, F )Op(A2) ∼= Op(F )/InOp(F ) = O/mn.

where we used the fact that Op(A2)/(In, F )Op(A2) = Op(F )/InOp(F ), since the image

of F in Γ(F ) is zero. Hence it is enough to calculate the dimension of k[x, y]/(In, F ) over

k. Let us denote m = mp(C). The sequence

0 k[x, y]/In−m k[x, y]/In k[x, y]/(In, F ) 0
ψ φ

is exact, where ψ(G+In−m) = FG+In and φ is a natural homomorphism. Using Lemma

1.18, we get that

dimk(O/mn) = dimk(k[x, y]/(In, F )) = n(n+1)/2−(n−m)(n−m+1)/2 = mn−m(m+1)/2

and finally, from the exact sequence

0 mn/mn+1 O/mn+1 O/mn 0

we see that

dimk(m
n/mn+1) = m(n+ 1)−m(m+ 1)/2−mn+m(m+ 1)/2 = m

as required.
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3.2 Intersection numbers

Given two curves F and G, we want to classify the types of points in V(F ) ∩V(G). One

way to achieve this is via the intersection number, which we now discuss.

Definition 3.5. Let F,G be projective plane curves (not necessarily irreducible.) Suppose

p ∈ P2, and let U be an affine chart containing p. Denote by f, g respectively the

dehomogenisations of F and G with respect to this affine chart U . We define

I(p, F ∩G) = dimk(Op(U)/(f, g))

and call it the intersection number of F and G at p.

Remark. As usual, this definition does not depend on the choice of affine chart containing

p, since it involves the dimension of a local ring. The definition may seem unintuitive at

first glance, so we now list some properties that this intersection number satisfies.

Theorem 3.4. The intersection number I(p, F ∩G) satisfies the following properties:

1. I(p, F∩G) is a non-negative integer, unless p ∈ V(gcd(F,G)), in which case I(p, F∩

G) =∞.

2. I(p, F ∩G) = 0 if and only if p /∈ V(F ) ∩ V(G).

3. If F,G are distinct lines then at the point of intersection p, V(p, F ∩G) = 1.

4. I(p, F ∩G) = I(p,G ∩ F ).

5. I(p, F ∩G) =
∑

i,j aibjI(p, Fi ∩Gj) where F =
∏

i F
ri
i , G =

∏
j G

sj
j are the factori-

sations of F and G into irreducible components.

6. I(p, F ∩G) = I(p, F ∩ (G+HF )) for any H ∈ k[X, Y, Z].

Proof. We prove only property 5; the remaining properties’ proofs may be found by

consulting [2], 3.3, Theorem 3.

We will show that for any F,G,H, I(p, F ∩ GH) = I(p, F ∩ G) + I(p, F ∩ H), as

then the result follows by induction. Assume that F and GH are coprime, for otherwise

property 1 will apply to complete the proof. Let us define the k−linear homomorphism
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φ : O/(F,GH) → O/(F,G) in the natural way and the k−linear homomorphism ψ :

O/(F,H)→ O/(F,GH) by ψ(a+ (F,H)) = Ga+ (F,H).

Now ψ is injective, as we will now show. Denote by Z the coset Z + (F,H), and

suppose ψ(Z) = 0. Then GZ ∈ (F,H), so we may write

GZ = uF + vH

for some u, v ∈ O. Now let S ∈ k[X, Y, Z] with S(p) 6= 0, and denote A = Su,B =

Sv, C = SZ. Then multiplying through by S in the above equation, we get

GSZ = SuF + SvH

and hence

G(C −BH) = AF.

By assumption, F and G have no common factors. Hence F must divide C −BH, which

means we can write C −BH = DF for some D ∈ k[X, Y, Z]. So C = BH +DF , hence

Z = (B/S)H + (D/S)F

which shows Z = 0, as required. Next, φ is clearly surjective. Hence the sequence of

vector spaces

0 O/(F,H) O/(F,GH) O/(F,G) 0
ψ φ

is exact. Counting dimensions with Lemma 1.18, we obtain the result.

Example 3.2. Let us compute the intersection number of F = X2, G = Y Z at p = [0 :

0 : 1]. Using property 5, we have that I(p, F ∩G) = 2I(p,X ∩Y ) + 2I(p,X ∩Z). Clearly

I(p,X ∩ Z) = 0. And since X, Y are distinct lines we have that I(p,X ∩ Y ) = 1. Hence

I(p, F ∩G) = 2.

Alternatively, we could look at the affine chart Uz, where p is identified with (0, 0), and

the dehomogenisations of F and G in this chart are f = x2, g = y respectively. Consider

the ring Op(Uz)/(f, g). As a basis, one can take {1, x}, since higher degree terms in x or

y are killed by the ideal (f, g). Hence dimkOp(Uz)/(f, g) = 2.

Lemma 3.5. Suppose p is a simple point on the projective plane curve C = V(F ). Then

I(p, C ∩G) = ordp(G), where ordp(G) is the order of G in the local ring Op(C).
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Proof. Let g denote the image of G in the local ring Op(C), and let U be an affine chart

containing p. Then ordp(C) = dimk(Op(C)/(g)) = dimk(Op(U)/(F,G)), since the rings

Op(C)/(g),Op(U)/(F, g) are isomorphic. Hence ordp(C) = I(p, C ∩G).

Lemma 3.6. Suppose f and g are distinct affine plane curves. Then

∑
p

I(p, f ∩ g) = dimk(k[x, y]/(f, g)).

Proof. [2], 2.9, Corollary 1.

Lemma 3.7. Suppose f and g are distinct projective curves. Then I(p, F ∩ G) ≥

mp(F )mp(G), with equality if and only if F and G have distinct tangent lines at p.

Proof. This is item 5 of [2], 3.3.

3.3 Bézout’s theorem

This subsection is devoted to the statement, proof and corollaries of Bézout’s theorem,

which is one of the cornerstones of projective geometry and the primary reason we prefer

projective varieties over affine ones. We denote by F,G the curves V(F ),V(G) respec-

tively.

Theorem 3.8. (Bézout’s theorem.) Let F,G be projective plane curves of degree m and

n respectively, and let us suppose F and G have no common factors. Then

∑
p∈V

I(p, F ∩G) = mn.

Proof. We follow a similar style to [2]’s treatment of Bézout’s theorem.

Let us assume that all of the points in F ∩ G can be written [x : y : 1] for some

x, y ∈ k. This assumption preserves generality, since any two projective curves without

common components intersect at a finite number of points, so we can transform those p

that lie on Z = 0 by a projective transformation. Then it follows that, denoting f, g for

the dehomogenisations of F and G with respect to Uz,∑
p∈F∩G

I(p, F ∩G) =
∑
p∈f∩g

I(p, f ∩ g) = dimk(k[x, y]/(f, g))
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by Lemma 3.6. Now let us denote Γ∗ = k[x, y]/(f, g), Γ = k[X, Y, Z]/(F,G), and R =

k[X, Y, Z]. Let us denote Γd, Rd for the vector space of homogeneous polynomials of

degree d in Γ, R respectively. Now we are going to show that there exists some sufficiently

large d such that dimk Γ∗ = dimk Γd = mn. Then the theorem is proved by the equality

above.

1. Let d ≥ m+n; we will show dimk Γd = mn. Let h : R→ Γ be the natural projection.

The product of rings R × R carries the natural ring structure induced by R, so let

φ : R× R→ R be such that φ(U, V ) = UF + V G. and let ψ : R→ R× R be such

that ψ(W ) = (GW,−FW ). It is a routine verification, remembering that F and G

are coprime, to check that the following sequence of vector spaces is exact:

0 R R×R R Γ 0.
ψ φ h

Now let us restrict each of the maps in the exact sequence to forms of given degrees.

The following sequence is then exact:

0 Rd−m−n Rd−m ×Rd−n Rd Γd 0.
ψ φ h

It is not difficult to calculate dimk Rd = (d+1)(d+2)
2

. Hence using Lemma 1.19, and

after some tedious algebra, we obtain dimk Γd = mn.

2. Let

α : Γ→ Γ,

H + (F,G) 7→ ZH + (F,G).

Let us denote by J0 the polynomial J(X, Y, 1) where J ∈ Γ. Since V(F,G, Z) = ∅,

then certainly F0, G0 are coprime. We claim that α is injective. Indeed, suppose

α(H+(F,G)) = 0. Then ZH = AF+BG for some A,B ∈ Γ. Hence A0F0 = −B0G0,

so, remembering that F0 and G0 are coprime, there exists some C ∈ Γ such that

B0 = F0C and A0 = −G0C. Let us denote A1 = A + CG, B1 = B − CF . Then

clearly (A1)0 = (B1)0 = 0. Hence we may write A1 = ZA′, B1 = ZB′ for some

A′, B′ ∈ Γ. Then H = A′F +B′G, so H ∈ (F,G), i.e. H = 0 in Γ, as required.
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3. Assume d ≥ m + n and let {A1, ..., Amn} be a basis for Γd. Let ai be the deho-

mogenisation of Ai with respect to Uz, and ai the residue of ai in Γ∗. We claim that

{a1, ..., amn} is a basis for Γ∗.

The map α in step 2 is an isomorphism of vector spaces from Γd onto Γd+1, provided

d ≥ m+n, since these two spaces have the same dimension, so any injection between

them is an isomorphism. Hence the residues of ZrA1, ..., Z
rAmn in Γd+r form a basis

for all r ≥ 0.

The ai span Γ∗, for let h = H ∈ Γ∗ where H ∈ k[x, y]. Then there is some N such

that ZnH∗, where H∗ is the homogenisation of H with respect to Z, has degree d+r,

Hence ZnH∗ =
∑mn

i=1 λiZ
rAi + BF + CG for some λi ∈ k and B,C ∈ k[X, Y, Z].

Hence H = (ZnH∗)∗ =
∑
λiai +B∗F∗ + C∗G∗. Hence h =

∑mn
i=1 λiai.

The ai are linearly independent. Suppose
∑mn

i=1 λiai = 0. Then
∑mn

i=1 λiai = Bf +

Cg. Hence Zr
∑mn

i=1 λiai = ZsB∗F +ZtC∗G for some r, s, t. Then
∑mn

i=1 λiZ
rAi = 0

in the space Γd+r. We know the ZrAi form a basis. Hence each λi = 0.

Example 3.3. To illustrate Bézout’s theorem in practice, let f = x2 + y2 − z2 and

g = x − y. Then the two projective plane curves defined by these polynomials intersect

when x = y and 2x2− z2 = 0, that is when (
√

2x+ z)(
√

2x− z) = 0, that is at the points

p = [1 : 1 : −
√

2], q = [1 : 1 :
√

2]. So only these points have non-vanishing intersection

number.

Let t ∈ P2. Let us compute I(t, f ∩ g). We have

I(t, (x2+y2−z2)∩(x−y)) = I(t, (2y2−z2)∩(x−y)) = I(t, ((
√

2x+z)(
√

2x−z))∩(x−y))

by application of property 6 of intersection numbers, subtracting (x+ y) times g from f .

Now, by property 5,

I(t, (x2 + y2 − z2) ∩ (x− y)) = I(t, (
√

2x+ z) ∩ (x− y)) + I(t, (
√

2x− z) ∩ (x− y)).

Now we appeal to property 3. Since p is the point of intersection of x− y with
√

2x− z,

only the second term evaluates to 1 at p, whilst the first term is 0 at p. Similarly, the
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first term evaluates to 1 at q, and the second term is 0 at q. Hence

I(p, f ∩ g) = 1, I(q, f ∩ g) = 1

and hence ∑
t∈P2

I(t, f ∩ g) = 2 = deg(f) · deg(g)

as claimed by Bézout’s theorem.

Figure 3: The geometric setup of Example 3.3 in A3. The intersection consists of two

lines through the origin, so two projective points. The plane is not tangent to the cone

so we expect the intersection number at each projective point to be 1.

Corollary. Suppose F,G are distinct projective plane curves. Then

∑
p∈P2

mp(F )mp(G) ≤ deg(F ) · deg(G).

Proof. Use Bézout’s theorem and Lemma 3.7.

Corollary. Suppose F is a smooth projective curve; then it is irreducible.

Proof. Suppose for a contradiction that F is reducible, and let F = GH be a non-trivial

factorisation. On the one hand, the curves G,H intersect somewhere in P2, by Bézout’s

theorem. So F has a root, which is a root of both G and H. On the other hand, the

singular points [X1 : X2 : ... : Xn] of F satisfy, for each i = 1, 2, ..., n,

∂F

∂Xi

= G
∂H

∂Xi

+H
∂G

∂Xi

= 0
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and so any point in the intersection of G and H must be singular. But this contradicts

the fact that F is smooth.

Remark. The converse does not hold in general; For example, suppose F = X3 − ZY 2.

Here F is irreducible, which could be verified by Eisenstein’s criterion using Z. But the

partial derivatives all vanish at [0 : 0 : 1], so the curve is not smooth.
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4 Divisors on curves

Let C = V(F ) be a projective plane curve in P2. We assume that C is smooth and

irreducible unless otherwise stated.

Definition 4.1. A divisor on C is an element of the free abelian group on the points of

C. That is,

D = n1p1 + n2p2 + ...+ nkpk

where the pi ∈ C and n1, ..., nk are a finite collection of integer coefficients.

Definition 4.2. We call degD =
∑k

i=1 ni the degree of the divisor D.

Definition 4.3. Let D = n1p1+ ...+nkpk be a divisor. We say that D is effective, writing

D ≥ 0, if each ni ≥ 0. Given two divisors D1 and D2 on C, we say that D1 ≥ D2 if and

only if the divisor D1 − D2 is effective. This sets up a partial ordering on the set of all

divisors of V(F ).

4.1 Divisors of functions

Definition 4.4. Let f ∈ k(C) be an element of the function field of C. We define the

divisor of f by

div(f) =
∑
p∈C

ordp(f)p

where ordp(f) is the order function defined by the discrete valuation ring Op(F ).

Lemma 4.1. Let f ∈ k(C). Then deg div(f) = 0.

Proof. Suppose C has degree n. Let f = g/h where g, h are homogeneous polynomials in

k[x, y, z] of common degree m. Then div(f) = div(g) − div(h), and div(g), div(h) have

the same degree mn by Bézout’s theorem.

Example 4.1. Let F = Y 2Z − X3 − XZ2. Then F is a smooth irreducible projective

plane curve. Let C = V(F ) and f = Y/Z. Let us compute div(f). We need only consider

those p = [X : Y : Z] such that Y = 0 or Z = 0. Otherwise Y/Z is a unit in the local

ring at p, hence ordp(Y/Z) = 0.
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To consider where Y = 0, we move to local coordinates in the affine chart Uz = {[X :

Y : Z] | Z 6= 0} by x = X/Z, y = Y/Z. Then in these local coordinates the equation of

the curve is

F∗ = y2 − x3 − x.

In this chart, y = 0 when x(x2 + 1) = 0, so either x = 0 or x = ±i. Hence the zeros are

[0 : 0 : 1], [i : 0 : 1], [−i : 0 : 1]. The tangent to F∗ at (0, 0) is given by the lowest degree

form, which is x. So y is a uniformiser of O(0,0)(F∗). Hence ord(0,0)(y) = 1. Similarly,

by appropriate coordinate changes, one can deduce ord(i,0)(y) = 1 and ord(−i,0)(y) = 1.

Hence the effective part of the divisor,

div(Y/Z)+ = [0 : 0 : 1] + [i : 0 : 1] + [−i : 0 : 1].

Now let us consider when Z = 0. We will use local coordinates in the chart Uy. Here the

equation of the curve becomes

F∗ = z − x3 − xz2.

For z = 0, we need x = 0. So (0, 0) is the only zero of z (in this chart.) The tangent to

the curve at (0, 0) is z = 0, so x is a uniformising parameter. From the equation of the

curve we have

z = x3 + xz2 = x3 + x(x3 + xz2)2 = x3(1 + (x4 + 2x2z2 + z4))

and 1 + x4 + 2x2z2 + z4 is a unit in the local ring O(0,0)(C). So ord(0,0)(z) = 3. We know

there cannot be other poles, since we expect deg div(Y/Z) = 0. Hence

div(Y/Z) = [0 : 0 : 1] + [i : 0 : 1] + [−i : 0 : 1]− 3[0 : 1 : 0].

4.2 The vector space L(D)

Definition 4.5. Let D be a divisor on C. We define

L(D) = {F ∈ k(C) | F = 0 or div(F ) +D ≥ 0}.

We have that L(D) is a vector space over k. We let l(D) denote the dimension of this

vector space.
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Remark. Write D =
∑

p∈C npp. One should think of L(D) as those functions in k(C)

which have poles of order at most np for points p with np > 0 in D, and which have zeroes

of order at least −np at points p with np < 0 in D.

Lemma 4.2. If deg(D) < 0, then L(D) = {0}.

Proof. Given any non-zero f ∈ k(C), we have deg div(f) = 0. Hence deg(D+div(f)) < 0,

so D + div(f) cannot be effective.

Theorem 4.3. If D ≤ D′, then L(D) ⊆ L(D′) and

dimk(L(D′)/L(D)) ≤ deg(D′ −D).

Proof. (Adapted from [2], 8.2, Proposition 3, (1).) The first claim is easy. For the second,

write D′ = D+P1 + ...+Ps, so that L(D) ⊆ L(D+P1) ⊆ ... ⊆ L(D+P1 + ...+Ps). We

will show that for any point P ,

dimk(L(D + P )/L(D)) ≤ 1.

Then the result will follow, since dimk(L(D′)/L(D)) = dimk(L(D+P1+...+Ps)/L(D+P1+

...+Ps−1))+dimk(L(D+P1+...+Ps−1)/L(D+P1+...+Ps−2))+...+dimk(L(D+P )/L(D)) ≤

1× s = deg(D′ −D) ([2], Problem 2.49.)

Let t be a uniformising parameter in OP (C) and let r = nP be the coefficient of P in D.

We define the following linear map:

φ : L(D + P )→ k

f 7→ (tr+1f)(P ).

We must check that φ is well-defined. Indeed, let f ∈ L(D + P ). Then ordP (f) ≥

−(r + 1). Hence tr+1f is a well-defined element of OP (C). Clearly φ is k−linear, and

kerφ = L(D). Hence there exists a one-to-one mapping L(D + P )/L(D) → k. Hence

dimk L(D + P )/L(D) ≤ 1.

Corollary. Given any divisor D, if deg(D) ≥ 0, then l(D) ≤ deg(D) + 1. In particular,

L(D) is finite dimensional.
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Proof. Write deg(D) = n ≥ 0. Let P ∈ C, and let D′ = D− (n+1)P . Then deg(D′) < 0,

so L(D′) = {0} by Lemma 4.2. Then since D′ ≤ D, by the above we must have

dimk(L(D)/L(D′)) ≤ deg(D −D′) = n+ 1 = deg(D) + 1.

Hence l(D) = deg(D) + 1.

It turns out that Theorem 4.3 is stronger when divisors are restricted to finite subsets

of C. Let D =
∑

p∈C npp be a divisor on C, and S ⊂ C. If we define degS(D) =
∑

p∈S np

and LS(D) = {f ∈ k(C) | ordP (f) ≥ −np for all p ∈ S}, then we get the following:

Lemma 4.4. Let S ⊂ C. If D ≤ D′ are divisors, then LS(D) ⊆ LS(D′) and, provided S

is finite,

dimk(L
S(D′)/LS(D)) = degS(D′ −D).

Proof. We follow the same tactic as in the proof of Theorem 4.3, so define φ : L(D+P )→

k by φ(f) = (tr+1f)(P ). We will show φ is surjective by choosing f ∈ k(C) such that

ordP (f) = −(r + 1), so φ(f) 6= 0, and ordQ(f) ≥ −nQ for all Q ∈ S, so f ∈ LS(D + P ).

But since S is finite, we may apply [2], Problem 7.21(b) to obtain such f .

4.3 Linear equivalence

Definition 4.6. Let D,D′ be be divisors on C. Then D and D′ are said to be linearly

equivalent if D′ = D+div(f) for some f ∈ k(C). If D,D′ are linearly equivalent we write

D ≡ D′.

Theorem 4.5. Let D,D′, D1, D
′
1 be divisors.

1. The relation ≡ is an equivalence relation.

2. D ≡ 0 if and only if D ≡ div(f) for some f ∈ k(C).

3. If D ≡ D′, then degD = degD′.

4. If D ≡ D′ and D1 ≡ D′1, then D +D1 ≡ D′ +D′1.

Proof. 1. For reflexivity, take f = 0. Symmetry is obvious. Suppose D ≡ D′ and

D′ ≡ D′′. Then D = D′ + div(f), D′ = D′′ + div(g) for some f, g ∈ k(C). Then

D = D′′ + div(f) + div(g) = D′′ + div(f + g), so D ≡ D′′.
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2. =⇒ is immediate. Suppose D ≡ div(f) for some f ∈ k(C). Then D = div(f) +

div(g) for some g ∈ k(C), so D = 0 + div(f + g). Hence D ≡ 0.

3. Suppose D ≡ D′. Write D = D′+div(f) for some f ∈ k(C). Then counting degrees

on each side, deg(D) = deg(D′ + div(f)) = deg(D′) + deg(div(f)) = deg(D′).

4. Write D = D′ + div(f), D1 = D′1 + div(g). Then D + D1 = D′ + D′1 + div(f + g),

so D +D1 ≡ D′ +D′1.

Lemma 4.6. If D ≡ D′, then L(D) ∼= L(D′).

Proof. Write D′ = D + div(g). Define the linear map

ψ : L(D)→ L(D′)

f 7→ fg.

Then ψ is a well-defined isomorphism of vector spaces ([2], 8.2, Proposition 3, (4)).

4.4 Hyperplane divisors

For a certain class of divisors, we can calculate l(D) explicitly.

Definition 4.7. We define a hyperplane divisor H on C as H = div(`) for some linear

homogeneous polynomial `.

Lemma 4.7. Any two hyperplane divisors H,H ′ are linearly equivalent.

Proof. Let `, `′ be such that div(`) = H, div(`′) = H ′. Then H −H ′ = div(`)− div(`′) =

div(`/`′) is principal.

The following theorem will be useful in this subsection; the proof is given in [2],

Chapter 5, page 61.

Theorem 4.8. (Max Noether’s AF + BG theorem.) Let F,G ∈ k[x, y, z] be homoge-

neous polynomials defining plane curves with no common component, with V(F ) smooth.

Suppose U is a homogeneous polynomial such that for every p ∈ V(F ) ∩ V(G),

I(p, F ∩ U) ≥ I(p, F ∩G).
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Then there exists homogeneous polynomials A,B such that U = AF +BG.

Lemma 4.9. Let f = u/v ∈ L(mH), where u, v are homogeneous polynomials of the

same degree m. Then there exists a homogeneous polynomial g of common degree m such

that f = g/`m.

Proof. Write C = V(F ) and let p ∈ V(F )∩V(v). Then, since div(u/v) = div(u)− div(v)

and div(u/v) + mH = div(u/v) + div(`m) ≥ 0, we must have div(u) ≥ div(v) + div(`m).

It then follows that I(p, F ∩ u`m) ≥ I(p, F ∩ v) since ordp(v) ≤ ordp(u`
m). Hence by

Theorem 4.8, there exists homogeneous A,B such that u`m = AF +Bv. Now by passing

over to k(C), we must have u`m = Bv and hence f = u/v = B/`m.

Remark. The above shows us that the non-zero elements of L(mD) consist of rational

functions of the form f/`m where f is homogeneous of degree m, and F does not divide

f . By counting arguments, we can determine the cardinality of a basis.

Theorem 4.10. Let H be a hyperplane divisor, m ∈ N. Then

l(mH) = md− ga + 1

where ga = (d− 1)(d− 2)/2 is the algebraic genus of C, d the degree of C.

Proof. There are
(
m+2
m

)
homogeneous polynomials in x, y, z of degree m, where

(
n
k

)
=

n!
k!(n−k)! is ”n choose k”. From these polynomials,

(
m−d+2
m−d

)
of them are divisible by F ,

which may be observed by writing such a polynomial f = Fg where F does not divide

the homogeneous g of degree m− d, and considering a basis for all such g. Hence a basis

contains(
m+ 2

m

)
−
(
m− d+ 2

m− d

)
=

(m+ 1)(m+ 2)

2
− (m− d+ 1)(m− d+ 2)

2

elements, and by expanding, one obtains the result.

Definition 4.8. Let G be a plane curve, and suppose G has only ordinary multiple points.

Define the divisor

E =
∑
p∈G

(mp(G)− 1)p.

Then any plane curve H such that div(H) ≥ E is called an adjoint of G.
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Remark. In the case that G is nonsingular (like our model curve C in this section), then

every plane curve H is adjoint to C.

Theorem 4.11. (Residue theorem.) Let G and E be as in Definition 4.8. Let D,D′ be

effective divisors on G, with D ≡ D′. Suppose H is an adjoint to G such that there exists

an effective divisor A with

div(H) = D + E + A.

Then there exists an adjoint H ′ of degree m such that div(H ′) = D′ + E + A.

Proof. Take M1,M2 to be curves of equal degree such that D+ div(M1) = D′+ div(M2).

Then we have

div(GM1) = div(G)+div(M1) = D+E+A+(D′−D+div(M2)) = div(M2)+D′+E+A.

and hence div(GM1) ≥ div(M2) + E. Now letting F be the homogeneous polynomial

defining G, and applying [2], 7.5, Proposition 3 to F,M2 and HM1, we see that the

conditions of Theorem 4.8 are satisfied. Hence there exists F ′, H ′ such that

HM1 = F ′F +H ′M2

where deg(H ′) = m. Now, calculating divisors,

div(M2) = div(HM1)− div(M2) = D′ + E + A

as required.

4.5 Riemann’s theorem

We can tighten the bound given as a corollary of Theorem 4.3.

Theorem 4.12. (Riemann’s theorem.) There exists a non-negative integer g such that

l(D) ≥ deg(D) + 1− g.

for all divisors D on C. The smallest such g is called the genus of C, and it is a non-

negative integer depending only on C.
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Proof. Following the notation of [2] 8.3, let s(D) = deg(D) + 1− l(D). Then we just need

to find g such that s(D) ≤ g for all divisors D on C. First, s(0) = deg(0) + 1 − l(0) =

1 − 1 = 0. So g ≥ 0, provided g exists. Next, suppose D ≡ D′. Then s(D) − s(D′) =

deg(D) + 1 − l(D) − deg(D′) − 1 + l(D′) = (deg(D) − deg(D′)) − (l(D) − L(D′)) = 0

(Lemma 4.6 and Theorem 4.5, 3.), so s(D) = s(D′). Also, suppose D ≤ D′. Then from

Theorem 4.3, we have dimk(L(D′)/L(D)) ≤ deg(D′−D), so l(D′)− l(D) ≤ deg(D′−D),

so deg(D)− l(D) ≤ deg(D′)− l(D′). Therefore s(D) ≤ s(D′).

Clearly if H is a hyperplane divisor, then S(mH) = ga for all m ∈ N, and if f ∈ Γ(C)

has degree m, then div(f) ≡ mH since div(f)−mH = div(f)− div(`m) = div(f/`m) is

principal. Hence deg div f = md. Now let p1 = [a1 : b1 : c1], p2 = [a2 : b2 : c2], ..., pk =

[ak : bk : ck] be points in C, and suppose without loss of generality that ai, bi 6= 0 for all

1 ≤ i ≤ k (otherwise a projective change of coordinates will achieve this.) Define

f(x, y, z) = (a1y − b1x)(a2y − b2x) . . . (aky − bkx).

Then div(f) ≥ p1 + ...+ pk. Now let H be any hyperplane divisor on C, and then by the

above div(f) ≡ kH.

Let D be any divisor on C. Let H be any hyperplane divisor. Write D =
∑n

i=1 nipi.

Use p1, ..., pn in the above to obtain a function f . Then there must exist a finite set

of points q1, ..., ql such that D +
∑
ql ≡ mH for some sufficiently large m ∈ N. Hence

s(D +
∑
ql) = s(mH), so s(D) ≤ s(mH). Since for any hyperplane divisor H we have

s(mH) = ga (Theorem 4.10), we have s(D) ≤ ga for any divisor D on C.

Corollary. There exists an integer N such that for all divisors D on C such that deg(D) >

N , l(D) = deg(D) + 1− g.

Proof. We noted that mH satisfies s(mH) = ga. Let N = deg(mH) + ga. Then if

deg(D) ≥ N we have that deg(D−mH)+1−g = deg(D)−deg(mH)+1−ga > 0. Hence,

by Theorem 4.12, l(D−mH) > 0. Hence there must exist some non-zero f ∈ L(D−mH),

so some f such that D + div(f) ≥ mH. Now let D′ = D + div(f). Then D ≡ D′ ≥ mH,

so by the proof of Theorem 4.12, l(D) = deg(D) + 1− g.

Remark. The algebraic genus ga and the genus g in Theorem 4.12 are equal when the

curve C is smooth, but generally they are different, as the following theorem illustrates.
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Theorem 4.13. Suppose C has at most ordinary multiple points. The genus g of C as

in Theorem 4.12 is given by

g = ga −
∑
p∈C

mp(C)(mp(C) + 1)

2
.

Proof. ([2], 8.3, Proposition 5.)

4.6 Differentials on curves

This section closely follows [2], 8.4.

Definition 4.9. LetR be a ring containing k and letM be anR−module. LetD : R→M

be a k−linear map such that D(xy) = xD(y) + yD(x) for all x, y ∈ R. We say that D is

a derivation of R into M .

Note. It follows that for any F ∈ k[x1, ..., xn] and x1, ..., xn ∈ R,

D(f(x1, ..., xn)) =
n∑
i=1

∂f

∂xi
D(xi).

Lemma 4.14. Suppose R is an integral domain with field of fractions K. Let M be a

vector space over K. Then any derivation

D : R→M

extends uniquely to a derivation

D′ : K →M

such that the diagram commutes:

R M

K

D

i
D′

where i is the inclusion map into the field of fractions.

Proof. Let f = g/h with g, h ∈ R, h 6= 0. Then fh = g, so we must have D′(x) =

D′(yz) = yD′(z) + zD′(y), hence D(x) = yD′(z) + zD(y). Therefore D′(z) = y−1(D(x)−

zD(y)), which verifies uniqueness. By defining D′ as in this formula, it is simple to see

that D′ is a derivation.

48



Construction 4.1. Let F be the free R−module generated by the set {(x) | x ∈ R}

(each (x) is a formal symbol). Let K be the submodule of F generated by the union of

the following subsets:

1. {(x+ y)− (x)− (y) | x, y ∈ R}.

2. {(λx)− λ(x) | x ∈ R, λ ∈ K}.

3. {(xy)− x(y)− y(x) | x, y ∈ R}.

Let Ωk(R) = F/K be the quotient of F by K, and denote by dx the image of (x) in F/K.

Let

d : R→ Ωk(R)

x 7→ dx.

We call Ωk(R) the module of differentials of R over k. We see d : R → Ωk(R) is a

derivation.

Lemma 4.15. Let M be an R−module. Let D : R → M be a derivation. Then there

exists a unique R−linear map φ : Ωk(R)→M that makes the following diagram commute:

R M

Ωk(R)

D

d
∃φ

Proof. If we define φ̇ : F → M from F in Construction 4.1 by φ̇(
∑
xi(yi)) =

∑
xiD(yi),

then since φ̇(K) = 0, we obtain a unique R−linear map φ : Ωk(R)→M that makes

F M

Ωk(R)

φ̇

d
φ

commute.

Remark. From an earlier note we have

d(G(x1, ..., xn)) =
n∑
i=1

∂G(x1, ..., xn)

∂xi
dxi
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for all x1, ..., xn ∈ R and G ∈ k[x1, ..., xn]. Hence if R = k[x1, ..., xn], then Ωk(R) is

generated by the differentials dx1, ..., dxn.

If R is an integral domain with quotient field K, then from Lemma 4.14 we have for

any z ∈ K, z = x/y,

dz = y−1(dx− (z/y)dy).

Theorem 4.16. Let C be a projective plane curve, K = k(C). Then the space of differ-

entials Ωk(K) is a 1−dimensional vector space over k, with basis {dx}.

Proof. [2], 8.4, Proposition 6.

Definition 4.10. Applying Theorem 4.16, we see that any two differentials are linearly

dependent; that is for any f, t ∈ K with t /∈ k there must exist unique v ∈ K such that

df = vdt. We write v = df
dt

and say v is the derivative of f with respect to t.

Lemma 4.17. Let O be a discrete valuation ring of K, and let t be a uniformising

parameter in O. If f ∈ O, then df
dt
∈ O.

Proof. [2], 8.4, Proposition 7.

4.7 Canonical divisors

Let C be a smooth irreducible projective curve, K = k(C), and let Ω = Ωk(K). Let

ω ∈ Ω, and p ∈ C. Let t be a uniformising parameter in Op(C). Write ω = fdt.

Definition 4.11. We define the order of ω at p ∈ C, denoted ordp(ω), by the value

of ordp(f) in the equality above. This definition does not depend on the choice of uni-

formising paramter, for suppose s ∈ Op(C) is another choice, so fdt = gds. Then

f/g = ds/dt, which lies in Op(C) by Lemma 4.17. Likewise dt/ds ∈ Op(C), and hence

ordp(f) = ordp(g).

Definition 4.12. We define the divisor of ω by

div(ω) =
∑
p∈C

ordp(C)p.

Lemma 4.18. All canonical divisors on C are linearly equivalent.
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Proof. Suppose ω, ω′ ∈ Ω. By Theorem 4.16, we have ω′ = fω for some f ∈ K. Hence

div(ω′) = div(f) + div(ω), and so div(ω′) ≡ div(ω).

Remark. In fact, all the of the canonical divisors form entirely one equivalence class, for

suppose W ≡ div(ω) for some divisor W . Then W = div(ω) + div(f) = div(fω), so W is

a canonical divisor.

Corollary. All canonical divisors have the same degree.

Lemma 4.19. Let C be a projective curve of degree n ≥ 3, and assume C has only

ordinary multiple points. Let

E =
∑
p∈C

(mp(C)− 1)p.

Let G be any homogeneous polynomial of degree n − 3. Then div(G) − E is a canonical

divisor.

Proof. We follow the style of [2], 8.5, Proposition 8. Let X, Y, Z be coordinates for P2

such that: The line Z = 0 intersects C at distinct points p1, ..., pn with intersection

multipliticites I(pi, C ∩ Z) = 1 for each i, the point [1 : 0 : 0] /∈ C, and no tangent to C

at a multiple point passes through the point [1 : 0 : 0]. We pass to the affine chart Uz by

the coordinate change x = X/Z, y = Y/Z. Let F be such that V(F ) = C, and define

fx =
∂F

∂X
, fy =

∂F

∂Y
.

Let Em = m
∑n

i=1 pi − E. Observe that, provided deg(G) = deg(G′) = n − 3, we have

deg(G)− E ≡ deg(G′)− E. Hence it suffices to show div(ω) ≡ En−3 by showing

div(ω) = En−3 + div(fy),

and since ∂f
∂y

= ∂F
∂Y
/Zn−1, is equivalent to showing

div(dx)− div(FY ) = −2
n∑
i=1

pi − E.

By the chain rule, dx = −(fy/fx)dy = −(FY /FX)dy. Hence for any p ∈ C,

ordp(dx)− ordp(FY ) = ordp(dy)− ordp(FX).
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which implies

div(dx)− div(FY ) = div(dy)− div(FX)

so we can show

div(dy)− div(FX) = −2
n∑
i=1

pi − E. (4.1)

First let us suppose p = pi for some 1 ≤ i ≤ n. Then y−1 = Z/Y is not tangent to

C at p, so it is a uniformising parameter for Op(C). Since dy = −y2d(y−1), we have

ordp(dy) = ordp(−y2) = −2. Now FX(p) 6= 0 (otherwise, FY (p) = 0, but since Z is not

tangent to F at p, this is a contradiction.) So boths sides of Equation 4.1 have the same

order −2.

Now suppose p is a point not equal to one of p1, ..., pn, so we can write p = [a : b : 1] ∈

C. Since dx = d(x− a) and derivatives do not change with translations, we may assume

that p = [0 : 0 : 1]. Then there are two cases to consider:

1. Y is tangent to C at p. Then by assumption, p cannot be a multiple point. Hence

x = X/Z is a uniformising parameter, and FY (p) 6= 0. So ordp(dx) = ordp(FY ) = 0.

2. Y is not tangent to C at p. Then we can choose y as a uniformising parameter for

Op(C). Hence ordp(dy) = 0 and ordp(fx) = mp(C)−1.

Corollary. If ω is a canonical divisor, then deg(ω) = 2g − 2 and l(ω) ≥ g.

Proof. Any two canonical divisors are linearly equivalent, so it’s enough to see what

happens with ω = En−3 as in the above lemma. Then by a corollary to Theorem 4.13

([2], 8.2, Corollary 3(b)), we obtain the result.

4.8 Riemann-Roch theorem

The Riemann-Roch theorem strengthens Riemann’s theorem by finding the missing term

to create an equality. We state and prove the theorem in the case that C is smooth;

however, it remains true even when C has singular points ([2], 8.5.). We need a few

preliminary facts before proving the theorem, though.
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Lemma 4.20. (Noether’s reduction lemma.) Let D be a divisor on C, and suppose

L(D) ( L(D + p). Then L(ω −D − p) = L(ω −D).

Proof. By hypothesis, there exists f ∈ k(C) such that div(f)+D+p ≥ 0, but div(f)+D �

0, which means we have ordp(f) = − ordp(D + p). Suppose for a contradiction that

L(ω−D−p) ( L(ω−D). Then similarly we have g ∈ k(C) such that div(g) +ω−D ≥ 0

and ordp(g) = − ordp(ω −D). Now

div(fgω) + p = div(f) + p+ div(g) + div(ω) = div(f) +D + p+ div(g) + div(ω)−D ≥ 0,

so fgω has a pole of order 1 at p, and no other poles. This is a contradiction; we expect

the sum of the residues of w to be zero ([5], Theorem 4.)

Corollary. Under the assumptions of the lemma, since l(D + p)− l(D) ≤ 1 we get

l(D + p)− l(D) + l(ω −D)− l(ω − d− p) ≤ 1,

and an easy induction yields

l(D +
k∑
i=1

pi)− l(D) + l(ω −D)− l(ω − d−
k∑
i=1

pi) ≤ k

where p1, ..., pk ∈ C.

Theorem 4.21. (Riemann-Roch.) Let C be a smooth projective curve of degree d. Let ω

be a canonical divisor on C. Then for any divisor D on C,

l(D)− l(ω −D) = deg(D) + 1− g.

Proof. Let n > 0 be a positive integer so large that deg(ω−nH) < 0 and hence l(ω−nH) =

0. Then by the proof of Theorem 4.12, there exists m > n and a set of points p1, ..., pk ∈ C

such that

D +
k∑
i=1

pi ≡ mH.

Hence deg(D) = deg(mH)−deg
(∑k

i=1 pI

)
= md−k. Now using the corollary to Lemma

4.20, we have that

l(D +
k∑
i=1

pi)− l(D) + l(ω −D)− l(ω − d−
k∑
i=1

pi) ≤ k
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and, since linear equivalence preserves the dimension of L and l(ω −mH) = 0, we get

l(mH)− l(D) + l(ω −D) ≤ k.

Now recall from Theorem 4.10 the result that l(mH) = m deg(C) − g + 1 (since C is

smooth, g = ga). Applying this to the above inequality we find

l(D)− l(ω −D) ≥ deg(D)− g + 1.

Now in the above, take ω −D as the divisor D. We have

l(ω −D)− l(D) ≥ deg(ω −D)− g + 1 = deg(ω)− deg(D)− g + 1

= g − 1− deg(D)

where we used the fact deg(ω) = 2g − 2. Hence we have

deg(D)− g + 1 ≥ l(D)− l(ω −D).

Combining the two inequalities, we obtain the Riemann-Roch theorem, l(D)− l(ω−D) =

deg(D) + 1− g.

Corollary. We have the following:

1. Let ω be a canonical divisor; then l(ω) = g.

2. If D is a divisor such that deg(D) ≥ 2g − 1, then l(D) = deg(D) + 1− g.

3. Let p ∈ C. Then provided deg(D) ≥ 2g, we have l(D − p) = l(D)− 1.

Proof. 1. Immediate, using the fact deg(ω) = 2g − 2.

2. This implies that deg(ω −D) < 0, and hence l(ω −D) = 0.

3. Taking D to have such large degree kills the dimensions l(ω−D) and l(ω−(D−p)).

Now Riemann-Roch says

l(D) = deg(D) + 1− g

and

l(D − p) = deg(D − p) + 1− g = deg(D)− g

and hence l(D − p) = l(D)− 1.
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5 Applications of Riemann-Roch

In this ultimate chapter, we discuss some important consequences of the Riemann-Roch

theorem to demonstrate its utility.

5.1 Clifford’s theorem

Clifford’s theorem is due to William K. Clifford, who published the result in 1878. As an

application of Riemann-Roch, we may deduce the result:

Theorem 5.1. (Clifford’s theorem.) Let C be an algebraic curve. Let D be an effective

divisor on C such that ω −D is effective for some canonical divisor ω on C. Then

l(D) ≤ 1

2
deg(D) + 1.

Proof. Let D′ be an effective divisor such that D+D′ = ω. Suppose that l(D−p) ( l(D)

for any p ∈ C, for otherwise D − p has smaller degree than D, so we could use D − p

to obtain a stronger inequality. With this assumption, let h ∈ L(D) be such that h /∈

L(D − p) for each p ≤ D′. Then the k-linear map

φ : L(D′)/L(0)→ L(ω)/L(D)

f + L(0) 7→ fh+ L(D)

is injective: Suppose φ(f + L(0)) = 0. Then it can be shown that f has no poles. Hence

f ∈ k = L(0).

Since φ is injective, we have l(D′) − 1 ≤ g − l(D), using Corollary 4.8, 1. Now

Riemann-Roch says for D′ = ω −D,

l(D′) = l(D)− deg(D)− 1 + g.

Hence

l(D)− deg(D)− 2 ≤ −l(D)

from which the result follows easily.
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5.2 Elliptic curves

An excellent introduction to elliptic curves is found in [6]. The purpose of this section

is to show how Riemann-Roch produces the standard (Weierstrass) form for an elliptic

curve.

Definition 5.1. An elliptic curve is a smooth projective algebraic curve of genus one,

with a specified point O.

Remark. Since the elliptic curve naturally carries a group structure, we usually specifiy a

point O in the definition to act as the identity. The details for this are in [6].

Figure 4: An elliptic curve.

Let C be an elliptic curve. If D is a divisor of strictly positive degree on C, then by

Corollary 4.8 item 2, we have that l(D) = deg(D). Let p be a given point on C. Then

since

l(p) = deg(p) = 1

we must have L(p) = k, so L(p) has basis {1}. Similarly,

l(2P ) = 2,

so L(2p) = k ⊕ xk, where ordp(x) = −2, and ordq(x) ≥ 0 for any q 6= p. So L(2p)

has basis {1, x}. Continuing, we see that L(3P ) has basis {1, x, y} where ordp(y) = 3

and ordq(y) ≥ 0 for q 6= p, and L(4P ) has basis {1, x, y, x2}. Finally, L(5P ) has basis

{1, x, y, x2, xy}. But

l(6P ) = 6
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and, since x3 and y2 both have order −6 at p, the set

{1, x, y, x2, xy, x3, y2}

must be linearly dependent. Hence there exists a0, ..., a6 ∈ k such that

a0 + a1x+ a2y + a3x
2 + a4xy + a5x

3 + a6y
2 = 0.

Both of a6, a5 must be non-zero in this relation, because {1, x, y, x2, xy} form a basis for

L(5P ). Hence after normalising and rearranging, we get

y2 + b1xy + b3y = x3 + b2x
2 + b4x+ b6.

Assuming the characteristic of k is not equal to either of 2 or 3, some substitutions give

y2 = x3 + ax+ b

which is the Weierstrass form of the elliptic curve.
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6 Conclusions

In summary, we have studied algebraic curves using the machinery of abstract algebra. We

have introduced new tools to study curves: Divisors, the intersection number, multiplici-

ties, and we have derived powerful results like Bézout’s theorem and the Riemann-Roch

theorem, which we proved in the smooth case, yet the theorem holds in much more gen-

erality. To show this requires more technology than this report could sustain, however

(see Hartshorne’s classic book, [7].)

Overall, the project was quite successful, and the goals were met. An original goal for

this project was to apply the Riemann-Roch theorem to some of the classical results of

projective geometry, such as Desargues’s and Pascal’s theorems (see the first few chapters

of [8] for more information) to see if alternative proofs would emerge. Both time and

space constraints did not permit this. But it is a possible further route which I would be

greatly interested in pursuing in future.

By introducing the nonsingular model of a curve, we have the set up to prove Riemann-

Roch for a curve with ordinary multiple points; this is the approach taken by Fulton in

[2]. The blowup of singularities is something I was interested in including; again, time

and space constraints disqualified this. But an interested reader should certainly consult

Fulton’s book for a treatment of this construction.

After finishing this report, a curious reader could go on to read more about algebraic

geometry as it applies to varieties of any dimension. The techniques introduced in the

study of curves are generalised nicely in this case. This could even lead on to scheme

theory, which is the language that modern algebraic geometry is phrased in. A possible

source for this is Shafarevich’s and Reid’s book [9]. A more advanced reader could consult

Hartshorne’s book [7], which is much heavier on the algebra.
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“Algebraic geometry seems to have acquired the reputation of being esoteric,

exclusive, and very abstract, with adherents who are secretly plotting to take

over all the rest of mathematics. In one respect this last point is accurate.“

- David Mumford
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